CHAPTER

One-dimensional Steady
State Heat Conduction
without Heat Generation

4.1 Introduction

In this chapter, we shall take up the study of one-dimensional, steady state heat conduction, without heat genera-
tion in a few common geometries such as plane slab, cylindrical shell and spherical shell. By one-dimensional
conduction, we mean that temperature variation is significant only in one-dimension and is negligible in other
dimensions; and, steady state means that the temperature does not vary with time at any location. Obviously,
solution of differential equation governing one-dimensional conduction will be much easier than that of the
general differential equation for three-dimensicnal conduction.

There are many practical instances where the heat conduction may be considered to be one-dimensional, e.g.
a plane slab whose thickness is small as compared to its length and breadth may be considered to have its
temperature varying only along its thickness; temperature in a long, cylindrical shell may be considered to be
varying only along its radius etc.

Solution of the governing differential equation along with the boundary conditions gives the temperature
field within the material and then, by applying Fourier’s law, we can calculate the heat flux at any point.

We shall, first, study heat transfer in three common, important geometries, namely plane slab, cylindrical
and spherical systems, with thermal conductivity of the material remaining constant. Plane slab is an important
case, applicable to analysis of heat transfer in boiler walls, furnace walls, and walls of buildings etc. Cylindrical
geometry is extremely popular for piping, containers etc. along with their insulations. Similarly, sphere is a
popular geometry used in industry to store hot/cold liquids, gases, chemicals etc.

We will also study heat transfer through multiple layers in these three geometries applying the thermal
resistance concept, already mentioned in the second chapter. We shall derive expressions for overall heat transfer
coefficient which is very useful in study of heat exchangers. We shall also present the concept of critical thickness of
insulation and optimum thickness of insulation and study their practical applications.

We shall, next, examine the heat transfer and temperature distribution in these geometries when the thermal
conductivity of the material varies with temperature.

Finally, we shall study briefly about two-dimensional conduction and present values of shape factors fora
few common situations. '

4.2 Plane Slab
Consfder a ptane slab as shown in Fig. 4.1. Let the thickness be L. Temperatures at the two faces are constant and
uriiform, ie. T=T;atx=0and T=T,atx = L. T S .



k ' Assumptions:

(i) One-dimensional ;:onduction, i.e. thickness L is small

Tl compared to the dimensions in the y and z-
' Tox) directions.
— O (ii} Steady state conduction, i.e. temperature at any point

within the slab does not change with time; of course,
temperatures at different points within the slab will
T, be different.
(iii) No internal heat generation.
(iv) Material of the slab is homogeneous (i.e. constant
y density) and isotropic (i.e. value of k is same in all
]:*H directions).
Our problem is to find out the temperature field within
the slab and then the heat flux at any point.
We start with the general differential equation in Carte-

Q- *—VVNV—e—Q sian coordinates, since the geometry under consideration is a

Ryap = LIKA) slab, we have from eqn. (3.9):

FIGURE 4.1 Plone slob and thermal cireuit d [ aT) d oT d [ oT oT
—lh— |+ =k | + =k, =] +4, = pe,—
ax\ Tox) oyl Yoy ) az\ar) TRTAYG;

. oT _dT . ) . Lo . .
In this case, Foiair 0, since one-dimensional conduction, i.e. temperature gradients are zero in y and
1y z
z-directions
aT . .
3 = 0, since steady state conduction
T

q; = 0, since there is no internal heat generation
ky =k, =k =k say, since the material is isotropic and not dependent on temperature,

S0, the governing equation for the plane slab with the above-mentioned assumptions becomes:

di(kz_T) =0 (4.1)

x x

T d°T -

ie. — =10, since k is a constant ..(4.2)
dx?

Temperature field is obtained by solving Eq. 4.2.
Integrating Eq. 4.2 once:

a
dx
Integrating again:
Tx)=Cix+ C, ..(4.3)

Eq. 4.3 is the general solution for the temperature distribution. Values of the two integration constants C,
and C, are obtained from the two boundary conditions, namely,

BC()} T=T,at x=0
BC(ii): T=T,at x=L

From B.C.(i) and Eq. 4.3: T =T, =G

From B.C.(ii) and Eq. 4.3: ML) =T, =CL+C
=CL+T,

Therefore, C =(T,-T)/L

Substituting values of C, and C, in Eq. 4.3, we get,
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TGy = 221

x+ T, (44)

From Eq. 4.4, we immediately observe that
(i) temperature distribution is linear in the slab
(ii) temperature distribution is independent of k
Eq. 4.4 can be written in non-dimensional form as follows,

T(I ) - T} X
L) W (4.5
T,-T L (4.5)
Next, to find the heatflux, apply Fourier’s law,
daTr -1 h-1
= —k— =-k =k L W/m? .
LA L p Wm e
Again, note that g is independent of x, i.e. heat flux is the same at every point within the slab.
Now, it is a simple matter to find the heat flow rate, since Q = g.A
. kKA(Q -T;
ie. Q= —(’L——Z) W (47)
Also, recollect immediately that the thermal resistance of the plane slab for conduction is given by,
AT AT
R = ._6 = m ...from Eq. (2.7)
L
. L )
1.€. Rslab = E .(48)

Note: Many times, weight of insulation may be a criterion while selecting insulation. In such cases, we have,
W=pAL=pARukA) = (k) A" (Ry)

i.e. for a specified thermal resistance, material with smallest product of p and k will be the lightest. The analysis

shown above to determine the temperature profile and heat flux is the standard approach to solve a heat

conduction problem, i.e. write down the general differential equation in the appropriate coordinate system,

simplify it with the assumpfions applicable to the problem at hand and then solve it in conjunction with the

boundary conditions to get the temperature distribution; once the temperature distribution is known, heat flux is

calculated by the application of Fourier’s law/ '
=

Alternatively:
For steady state heat conduction with no heat generation, let us apply the First law, namely,
dEg
Ein—Egu *+ Egen = —&i— wi{4.9)
Since there is no heat generation, E,, = 0 and RHS = 0 since it is steady state.
ie. Epn=Em (410}

This means that energy entering the system (i.e. slab, in this case) is equal to the energy leaving the system,
i.e. Q is a constant. Then, we can directly integrate the Fourier’s eguation. Even though Q is not known to start
with, we know that it is a constant and therefore, ( can be taken out of the integral sign. We proceed as follows:

Refer to Fig. 4.1. From Fourier’s law, we have,

dT
=-kA-—
Q T .

Separating the variables and integrating from x = 0 to x = L (with T =T, to T = T}, we get,

(411)

L T,
dex =-kA JdT, since (Q, k, A are constants for the slab.
0 T
ie. OL = —kA(T, - Ty) = kA(T; = T2)
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ie. Q- M_(iﬂ

Note that Eq. 412 for heat transfer rate is the same as Eq. 47.

w . (4.12)

To get temperature distribution: Integrating Eq. 4.11 between x = 0 and x = x. (with correspondingly, T = T,
and T = T{x)), we get,

dex =—-kA j'dT

0 T,

_M@G-TE) |
—

ie. Q (4.13)

Now, remember that in steady state, ( is the same through each layer of the slab. So, equating Eqs. 4.12 and
4.13, we get,

_KAWMG-T) _ KA -T()

ie.
Q L x
T =Ty
ie. T(x) = % T, {4.14)
Note that Eq. is the same.as Eq. (4.4). From Eq. 4.14, we can write the temperature distribution in the

1 form as follows,

- x
-4, _x {4.15)
Lh~T L
Note that Eq. 4.15 is the same as Eq. 4.5
Note: Above alternative analysis is applicable only for steady state conduction, with no internal heat generation.

/;73‘ Heat Transfer through C@mposlte Slabs
(=

slab in non-dimensio

at transfer through a composite slab, congisting of 2 or 3 layers of materials of different thermal conductivities,
s considered next. This is a very common?a;p]ication, e.g. in the case of insulation of furnace walls, insulation of
walls of buildings, refrigerators, cold storage plants, hot water tanks, etc.

While solving heat transfer problems in composite slabs under steady state conditions, it is convenient to
use the thermal resistance concept.

Consider a composite slab consisting of three layers 1, 2 and 3 as shown in Fig. 4.2. Let the thicknesses of the
three layers be L;, L, and L, respectively; also, the respective thermal conductivities are k,, k, and k,.

On the LHS of the composite slab, a fluid at a temperature T, flows on the surface with a convective heat
transfer coefficient of %, and on the RHS of the slab, a fluid at a temperature of T, flows with a convective heat
transfer coefficient of h,, as shown. Let T, be higher than T, so that steady state heat transfer rate Q is from left
to right as indicated in the Fig. 4.2.

Assumptions:
(i) Steady state, one-dimensional heat conduction.
(ii) No internal heat generation.
(iii) Constant thermal conductivities k,, k, and k.
(iv) There is perfect thermal contact between layers, i.e. there is no temperature drop at the interface and the
temperature profile is continuous.

Since it is a case of steady state conduction with no internat heat generation, it is clear from the First law that
heat flow rate Q, through each layer is the same. Referring to Fig. 4.2, it may be seen that heat flows from the
fluid at temperature T, to the left surface of slab 1 by convection, then by conduction through slabs 1, 2 and 3,
and then, by convection from the right surface of slab 3 to the fluid at temperature T,

Let the area of the slab normal to the heat flow direction be A(m?). Now, considering each case by turn,
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FIGURE 4.2 Composite slab with three loyers and the thermal resistance network

Convediion ol the left surfuce of slab |
Q = h, A(T, - T), from Newton's Law of Cooling
ie. I,-Ty= Q
A
Conduction through slab 1
Q= M, from Fourier’s law
L
ie. T,-Tr= 2
kA
Conduction throwgh slab 2
Q= M, from Fourier’s law
L
ie. T,-1,- 22
ky A
Conduction through sloh 3
Q= E&M, from Fourier's law
Ly
_ QLs
e Ty—Ty= —=
ie 3~ 1y ky A

Convection ot the right swfuce of sleb 3
Q = h, A(T, - T,), from Newton’s Law of Cooling

Q

ie. T,- Ty = ——
a— 1y P

ONE-DIMENSIONAL STEADY STATE HEAT CONDUCTION WITHOUT HEAT GENERATION

@)

(b

..{c)

.(d)

(€)




On adding Egs. a, b, ¢, d and e, we get

1 L L, Ly 1
T,-T, = R e el
poe Q[h,,A kiA kA kA hA @
ie. T.-T,=QIR, + R + R, + Ry + R] -{g)

where, R, = convective resistance at left surface of slab 1,
R, = conductive resistance of slab 1,
R; = conductive resistance of slab 2,
Rj; = conductive resistance of slab 3, and
R, = convective resistance at right surface of slab 3.

So, we write Eq. g as:

-T;

0- L-T .(4.16)
Ry+Rj+Ry+ Ry + Ry

Now, observe the analogy with Ohm’s law. Refer to the Fig. 4.2 for the equivalent thermal circuit. It is clear
that (T, - T,} is the total temperature potential, (3 is the heat current flowing and the total resistance is the sum of
the individual five resistances which are in series.

For thermal resistances in series, we have,
R, =ZR ...{4.17)

For thermal resistances in parallel
Thermal resistances may be arranged in parallel too, as shown in Fig. 4.3.

Here, the main assumption is that the left hand and right

n Insulated hand faces of the composite slab are at uniform and isothermal

o temperatures T; and T), respectively, as shown in the Fig. 4.3.
T — e T, Also, the lateral surfaces are insulated so that the heat flow can
— be considered as one-dimensional, in the X-direction only.
@ k, From the analogy with the electrical circuit, when the
resistances are in paraliel, the total resistance is given by:
Q— ] —*Q I 1.1 1 1

@ & Ra RR LT
n — T, A kA

. R R,
I s R, = (418
X ' fot Ri+R, ( )

Ry = Litk,A)

T, For thermal resistances in series and parallel: General case of
thermal resistances arranged in series and parallel is shown in

Q a Fig 44.
Again, remember that one-dimensional heat flow is
assumed,; strictly, this is possible only when all the materials of
Ry = LitiA) the composite slab have the same value of thermal
. . conductivity. If the thermal conductivities of materials 1,2 and
FIGURE 4.3 Crz;?spf)g;:zss‘qb with porallel 3 differ greatly, then obviously, the heat flow will not be one-
dimensional since the heat will tend to flow through the path of

least resistance. Therefore, it is necessary that for practical purposes, for one-dimensional flow to be applicable,
the thermal conductivities do not vary drastically.
Applying the rules of electrical circuit for series and parallel resistances, we have,
_ AT B n-T,
" Ry +Reg +R; Ry +Reg+Rs

(4.19)
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where, R, is the effective resistance of the three
resistances R,, R; and R, in parallel, as shown in Fig. 4.5.

! = —L + i + L .-(4.20)

Ryg Ry Ry Ry

Note: Observe that the concept of thermal resistance is
very useful in solving heat transfer problems in multiple
layers of different thermal conductivities and also when

multimodes of heat transfer are present. Only @
conditions to be satisfied to apply this concept are (i)
steady state heat transfer, and (ii} no internal heat Insulation
generation. -

Le.

4.4 Qverall Heat Transfer
.~ Coefficient, U (W/{m*C))

Consider the case of a furnace where heat is transferred
by the hot gases to the inside surface by convection,
then by conduction through one, two or three layers of
brick and insulation, and finally to ambient air by
convection at the outermost surface. This situation is
represented in Fig. 4.2.

Now, in most of the practical cases, temperature of the hot gases (T,) and that of the ambient (T,) are known;
intermediate temperatures are not known. We would like to have the heat transfer given by a simple relation of
the form

FIGURE 4.4 Composite slab with series—paraliel
resistanices and the equivalent thermal circuit

Q= UA(T, - Tp) = UAAT ..-{4.21)
where, ( is the heat transfer rate (W), A is the area of heat transfer perpendicular to the direction of heat transfer,
and (T, - T;) = AT is the overall temperature difference.

Qur problem is to derive a relation for U.

Now, we have from Eq. 4.16,
Q= LT . (4.16)
R, +R;+R, + Ry + Ry

Comparing Eq. 4.16 and Eq. 4.21, we can write

~T T —
Q=UA(TR_T[,)=[ LT } ekl
R, +Ry+Ry+ Rz + R, ZR”’
1
ie. UA = {(4.22)
erk
ie. U= e l\lz_ (4.23)
AN Ry mC
1 i
o, U= T T (424)
e

ha kl k2 k3 hb

Remember the expression for U as given by Eq. 4.23; it is easier and is applicable when we deal with other
geometries, too.

Concept of overall heat transfer coefficient is particularly useful in heat exchanger designs. Consider a heat

exchanger where a hot fluid flows on one side of a heat exchanger wall and a cold fluid flows on the other side.

Then, heat transfer is by convection on the hot side, by conduction across the separating wall and again by
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convection on the cold side. In such a case, overall heat transfer coefficient is obtained by applying Eq. 4.23.

Values of overall heat transfer coefficients for many practical cases are tabulated in handbooks (see the chapter
on heat exchangers).

Example 4.1. Determine the steady state heat transfer through a doubie pane window, 0.8 m high, 1.5 m wide, consisting
of two 4 mm thick glass layers (k = 0.78 W/ {mC)), separated by a 10 mm thick stagnant layer of air {k = 0.026 W/ {mQC)).
Inside temperature of room air is maintained at 20°C with a convective heat transfer coefficient of b, = 10 W/(m?C).
Outside air temperature is -10°C and the convective heat transfer coefficient on the outside is by, = 40 W/(m?C). Also,
determine the overall heat transfer coefficient.

Solution. The schematic diagram and the equivalent thermal circuit is shown in Fig. Example, 4.1.

T s Ta Fluid flow
| T,=-10°C ,
By = 40 Wim'°C
Q — » Q

: T —

. K K K, \/ Temperature profile

Fluid flow
T,=20°C Pl
hy = 10 Wim>*C — > \ ——
0.004 m 0 m
)
Ta T [ T Ty T
Q Q
R, R Ry Ry Ry

FIGURE Example 4.1 Double pane window and equivalent thermal circuit

This is the case of steady state, one-dimensional conduction, without internal heat generation, through a composite
slab. Therefore, we can conveniently apply the thermal resistance concept. Note that heat transfer occurs from left to
right, i.e. from the warm, inside air to the glass surface on the left by convection, then by conduction through the glass
layer, then again by conduction through the stagnant air fayer (no convection here since the air layer is stagnant), and by
conduction through the second glass layer and finally, by convection to the outside cold air.

Let us solve this problem in Mathcad:

Data:
L;:=0004m, [,:=001m, [;:=0004m, T,:=20C 7T,:=100C #, = 10 W/(m?C)
hy =40 W/(m’C) &, := 078 W/(mC)  k, = 0.026 W/(mC) k; = ki, W/(mC)
A=15x08m?> jeA=12m?
Convective resistance on the inside, R,:
R, = L e R, = 0.083 C/W
h,-A

Conductive resistance through first glass layer, R,:

Ry P ie Ry =4274 %107 C/W
kA
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Conductive resistance through stagment air layer, R,:

L .
R, = ie R, =0321C/W
2= A 2 /

Conductive resistance through second glass layer, R;:

ie Ry =4274x107° C/W

Convective resistance on the outside, R,:

1
Ry = ie. R, = 0.021 C/W
P A ’ /
Since all the resistances are in series, we write,

Ryy =R, + R+ R, + Ry + R,

ie. R,, = 0433 C/W ... total themal resistance
Therefore, heat transfer rate through the double pane window is given by,
T.-1 .. .
Qi= —* Srinivas institute of Technology

R
ie. Q=69248 W Acc. N0l$3\39.20...

calrgiy 2

Overall heat transfer coefficient, l: Ca“ m.:____! crgtessesia
U= {define LL..refer to the geﬁﬁdtion of Eg. 4.23)
ARy
ie. U = 1.924 W/(m’C).

Note the magnitudes the thermal resistances offered by the glass layer and the air layer. Resistance of air layer is
much more because of its poor thermal conductivity.
It is instructive to see what will be the heat flow rate if a window with a single glass layer is used. In such a case,

If a single layer glass window is used:

Ryt =R, + Ry + R, ie Ry = 0108 C/W
- -T;
And, Q:= T"Ti ie Q=27665W (heat transfer rate with single glass layer)
tot

Observe the difference in heat flow rates for a single glass window and a double pane window. This is the reason
why double pane windows are used, particularly in cold weather. Of course, an additional advantage is that it shieids
the residents from outside noise, too.

Exomple 4.2 Find the heat flow rate through the composite wall shown below, in Fig. 4.7. Assume one-dimensional
conduction. Thermal conductivities of slabs A, B, C and D are 150, 30, 65 and 50 W/ (mC), respectively. (M.U. Dec.
1997)

Solution. This is a case of steady state, one-dimensional heat cenduction in composite slabs with no internal heat gen-
eration. Therefore, thermal resistance concept may be used very conveniently.

Referring to the Fig. Ex. 4.2 we can write,

Q =AT/(R4 + Rgc +Rp)
where, AT = Total temperature difference
R, = thermal resistance of slab A
Ry = effective thermal resistance of slabs B and C, which are in parallel
Ry = thermal resistance of slab D.
Calculations are done using Mathcad:

Data:
Ag=100x 104 m?  Ap=30x10%m? A =70x107m’  Ap:=100x107 m*  L,=003m
Lg =008 m L-:=008m Lp:=0.05m k, =150 W/(mC) kg = 30 W/(mC) ke := 656 W/(mC)
kp= 50 W/(mC) AT := (400 - 60) deg.C
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3cm
7ecm
400°C g P

L A

A

/ A ! 5¢m

X8 cm
Q 10 ¢m 3cm
Rg
400°C 60°C

| Qﬁ*—PQ—/\/\/\/—"# AN —e—>

Ry

FIGURE Example 4.2 Composite slab with series—parallel resistances

Calculate the thermal resistances:

L
Ry:=—2% ie. Ry =002 C/W
A A, e Ra /
Rp = 8 ie Rp=0889 C/wW
5 A £ Rg=0.
Ly .
Rei= ie Rp=0176 C/W
kc-
Rp = L2 ie. Rp=01C/W -
P % Ag TR :
Now, resistances R and R are in parallel; Let their effective resistance be Ry
Ry R .
Then,  Rge:= R:+ R, i.e. Rge = 0147 C/W
Total thermal resistance: Ryt = Ry + Rge + Rp
Adding: Ry = 0267 C/W
AT
Therefore, heat transfer rate: Q= RT
ot
ie, Q=1274x10°w,

Example'4.3. A composite wall consists of a 10 ¢m layer of building brick {k = 0.7 W/(mC)} and 3 em thick plaster (k =
0.5 W/(mC}). An insulation material of k = 0.08 W/(mC} is to be added to reduce the heat transfer through the wall by
70%. Determine the thickness of the insulating layer.

Solution. In this case the temperatures on either side of the composite wall are not given. 5o, we assume that the overall
temperature difference AT remains the same in both the cases. Alse, since it is the case of steady state heat transfer with
no intetnal heat generation, we can apply the thermal resistance concept. We have:

Case (i): steady state heat transfer for the composite wall consisting of building brick and plaster. Let the steady state
heat transfer rate be (J; let the thermal resistances of the building brick be R, and that of plaster be R,.
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< Y e— < > N N
01m 0.03m 01m  0.03mi,
L e x b x
Case (i) Case (ji)

FIGURE Exomple 4.3 Composite wall without and with insulation

Case (ii): steady state heat transfer for the composite wall consisting of building brick and plaster plus the insulation
layer. Now, from problem statement, the steady state heat transfer rate will be 0.3 (Q; thermal resistances of the building
brick, plaster and insulation are Ry, R; and Ry, respectively.

These two cases are depicted in Fig. Example 4.3.

We have, for case (i) Q= AT/(R, + Ry), and
for case (ii}: 03Q =AT/(R; + Ry, + Ry)
Dividing: (Ry+ R)/(Ry + Ry + Ry =03
Considering a heat transfer area of A =1 m?, let us do the calculations in Mathcad:
Data:

Ly=01m L,=003m k=07 W/(mC) kp = 0.5 W/(mC) ky = 0.08 W/(mC)
A=1m? L, thickness of insulation layer is to be found out

Thermal resistances:

R, = ELI_A ie. R, = 0143 C/W (thermal resistance of brick layer}
N
R, := kLizA ie. R, =0.06 C/W (thermal resistance of plaster layer)
)
Ry = Ly/(ky A) (thermal resistance of insulation layer)
Therefore, R, + R, = 0203 C/W
And, (Ry+ Rp}/(Ry + R, + R3) =03
R, +R
ie. Ry = A==t — (R, +R;) ...define Ry
0.3 :
ie. Ry = 0473 C/W .define Ly
Therefore, thickness of insulation layer:
Ly = Ryks-A
ie. Ly= 0038 m (thickness of insulation layer required fo

reduce the heat transfer rate by 70%)

Example 4.4. A square plate heater (size: 15 cm % 15 em) is inserted between two slabs, Slab A is 2 cm thick (k = 50 W/
(mK)) and slab B is 1 em thick (k = 0.2 W/(mK)}. The outside heat transfer coefficients on both sides of A and B are 200
and 50 W/{m?K), respectively. Temperature of surrounding air is 25°C. If the rating of heater is 1 kW, find:
(i) maximum temperature in the system .
(i) outer surface temperatures of two slabs.
Draw the equivalent circuit for the system (P.U. Nov. 1994)
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Q Square plate heater

;
T, 0 "/Tz
Qe ——q
2 h, =50 Wim C
hy = 200 Wim'C
T,=25°C Ka K 7,=25C
“oaem ) T
T 001m
> X
T, T, T, T T,
Q) +——" NN 8- ANA-ANN 0 Q,
R, R, T R, Ry
Q

FIGURE Example 4.4 Twe slabs with a plate heater in between and the thermal circuit

Solution. This is a case of steady state conduction, with no internal heat generation within the slabs. So, thermal resist-
ance concept can be applied. Note that, obviously, the maximum temperature, T, will occur at the heater in between the
slabs; and, the total heat supplied, Q, is divided into two portions: (Q; flowing out to the left and (J, flowing out to the
right, as shown in Fig. Example. 4.4.

We use the condition: Q=0Q,+0Q,=1000 W
Consider one m® area of heat transfer, i.e. A = 1 m?2
Then, O = (T, -T )R, + R,), and

=Ty -T)/ (R, +R)
where, R, = thermal resistance of slab A
R, = thermal resistance of slab B
R, = convective resistance on the left face of A, and
R, = convective resistance on the right face of slab B.
Let us get the solution in Mathcad:
Data:
Ly=002m Lp:=00lm  k,:=50 W/(mK) kg:=02W/(mK) k=200 W/(m?K)
hy =50 W/m'K)  T,:=25°C A :=0.15.0.15 m?
ie. A=002m’  Q:=1000 W (rating of the heater)
Let the temperature at the heater be T}...to be found out

Thermal resistances:

R, = kffiA ie. R, =0.018 C/W (thermal resisiance of slab A}
R, := k?A ie. R, =222 C/W (thermal resistance of siub B)
R, = h,l-A ie. R,=222C/W {convective resistance on the left face of slab A)
R, := h,,1~A ie. R, =0889 C/W (convective resistance on the right face of slab B)
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To get ; and Q, We have,

(L -1 T -T2)
Q,=—— and = —
VSRR 9T R TR
g] _ R+ R) @)
Q, (R, +R,)
and, Q, +Q, = 1000 ..{b)
Solve Egs. a and b simultaneously to get Q) and Q3
R, +R, .
QO by Q, = ﬁ ie byer = 12963
Therefore, Q; = 12,963 (3,

Now, since ; + O, = 1000, we get
12.963 Q; + (2, = 1000

ie. 13.963 Q, = 1000
1000
ie. = ie. = 71618 W
@ = 3563 Q
And, Q, = 1000 - Q, ie. (= 928382 W

To calculate maximum temperature, T;, We have
Q1 =(Tg- T)/(Ry + R

Therefore:

Ty=Q R+ R)+T, ie. T,=247812°C ..maximum temperature in the system
Verify:

Q; = ;‘Z ;;"ﬁ ie. @, =71618 W ..verified.
To get T; and T, we calculate T; and T, applying the Fourier's law to slab A and B separately:
ie. Q= (I, - T)/R;, and Q= (Th - T)/Ry
ie. Ty = Ty- Ry
ie. T, = 231.307°C ..temperature on left face of A

And, Ty =T - Q- Ry
ie T, = 88.66°C ...femperature on right face of B

Exomple 45. A composite insulating wall has three layers of material held together by 3 cm diameter aluminium rivet
per &1 m? of surface. The layers of material consist of 10 cm thick brick, with hot surface at 200°C, 1 cm thick wood with
cold surface at 10°C. These two layers are interposed with a third layer of insulation material 25 mm thick. Thermal
conductivities of materials are: k {brick) = 0.93 W/(mK), k (ins) = 0.12 W/(mK), k (wood) = 0.175 W/(mK) and k(Al} =
204 W/(mK). Assuming one dimensional heat flow, calculate the percentage increase in heat transfer rate due to rivets.

Solution. Consider 0.1 m? area of the wall. By data, this area contains one alumilium rivet of 3 cm diameter.

Since this is a case of steady state conduction with no internal heat generation, we can apply the thermal resistance
concept.

There are two cases of heat transfer, (a) with the rivet let the heat transfer rate be Q) and {b) without the rivet let the
heat transfer rate be (,. Now, the total temperature drop is the same for both the cases, i.e (200 — 10) = 190 deg.C.

Therefore,

(Q,/Qy) = (Total thermal resistance with the rivet)/{Total thermal resistance without the rivet)

Mathcad solution to this problem is given below:

Data:
Lpfa =01 m Lis = 0025 m Lyood = 001 m d:=003m L= Lysa + Lins + Lwood
ie. L=0135m Ko = 0.93 W/(mK) ks = 0.12 W/(mK} K ooq = 0.175 W/(mK)
ko =204 W/(mK)  A:=01m’
g2
Area of rivet: Apvet = —’i:—
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Brick Insuation \wood
-

200 C\( 10°C
Al rivet,
__—"" 3 cm diameter
10cm AT
25¢m 1om
R R. R
200°C 1 2 0°
AN ——— AN 107¢
Q — Q
] Raq
S S ANA——
{a) Thermal circuit with the rivet
200 °C R, R, Ry 10°C

Qe AN NN e—q,

(b) Thermal circuit without the rivet
FIGURE Example 4.5 Composite slab with aluminium rivet

ie. Aper = 7069 x 20°4 m?

Thermal resistances: Let the thermal resistances of brick, insulation and wood, without the rivet in position, be R,, R,
and R;, respectively. Then,

R, = Lbna ie. R, =1075C/W (thermal reststance of brick layer)
1 1 £l
Kirigse* A
R;:= }CLLS’A ie. Ry, =2083C/W {thermal resistance of insulation layer)
Ry = kLWAA ie. Ry =0571C/wW (thermal resistance of wood layer)
wood *
River = L ie R = 0936 C/W (thermal resistance of rivet)
km “Aiyer

Now, without the rivet, total thermal resistance is = (R, + R; + Rj), since all the resistances are in series.

When, the aluminium rivet is in place, strictly speaking, while calculating the thermal resistances of brick,
insulation and wood, area used must be = (0.1 m? minus the area of rivet); however, note that area of rivet is very small
(i.e. 0.0007068 mz) compared to 0.1 m?. Therefore, with the rivet also, we use the same area of 0.1 m’, i.e. we use the same
R, R; and R,

Without the rivet, total thermal resistance, Ry
Rt =Ry + Ry + Ry ie. Ry, = 3730031 C/W
With the rivet, total thermal resistance, R
Now, refer to Fig. Example 4.5 R, is in parallel with R, ... Therefore,
R..-R,, . . . . L
R = ﬁR"—‘e'—- ie. Rgy=0748 C/W (effective resistance when rivet is in place)
1114

Let Q; = heat transfer rate with the rivet and (2, = heat transfer rate without the rivet

rivet
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Let Q, by ; = 3,/(Q;. Since temperature difference is samne, i.e. (200 - 10) = 190°C in both cases, '
QZ/QI is equa]' to the ratio, (Rwith rivel)/(Rwithuut riwl)
Qby Q= Rt ie. Q,by Q,=0201
- Rlot
Therefore, % increase in heat transfer,
Increase = (- Q,) x 100/Q, = [ 1 - (Qy/ QI x 100
Increase := (1 -, by ) 100
ie. Increase = 79.937% (percentage increase in heat transfer rate
due to aluminium rivet)

Note: To be accurate, while calculating the thermal resistances of brick, insulation and wood, if we consider the area as
0.1 m? minus the area of rivet, i.e. 0.0992932 m? instead of 0.1 m?, we get the following resuls:

Rigmew = R,N-Wg;aé—i C/W (new value of Ry,)

i.e. Rynew = 3756582 C/W (new value of Ry}
With the rivet in place:

Ry = éz“"“‘""jj:‘“ ie. Ry =074 C/W (effective resistance when rivet is in place)

totnew rivet
Note that new value of R, has become (1749 as compared to earlier value of 0.748.
And, to calculate the increase in heat transfer,

Reff

QG by Q= —%- ie Q;byQ, =019
Rtotm'w
Increase := {1 - (Q; by ) 100
e Increase = 80.05% (Note that fliis is not much different from earlier value of 79.937%.)

Example 4.6, The inside temperature of a furnace wall, 200 nm thick, is 1350°C. The mean thermal conductivity of wall
material is 1.35 W/{mC). The heat transfer coefficient of cutside surface is a function of temperaturte difference and is
given by:

l = 7.85 + 0.08 x AT where AT is the temperature difference between outside wall surface and surroundings, Deter-
mine the rate of heat transfer per unit area, if the surrounding temperature is 40°C. {M.U., May 2000)

Solution. Refer to Figure Example 4.6.

T, =1350°C T,

— 1
Q——> —>Q
‘ h,=7.85+0.085 AT
T,=40°C
Pr—
0.2m

L e x

T1 T2 Ts

Q —>— NN A

Rwa!l RH

FIGURE Example 4.6 Furnace wall with convection on outside surface
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Data:
A=1m? T, = 1350°C =02m T,=40°C  &k:=135W/mC  h(T,):=785+0.08.(T,-T,)
Since we have steady state heat transfer with no internal heat gerieration, we apply the thermal resistance concept.

Also, the heat transfer rate, () is the same through each layer, ie. through the furnace wall as well as through the
convective layer adjacent to the outside surface of the furnace wall.

Thermal resistances:

L .
Ray = A ie. Ry, =0148 C/W
R, (T,) = ﬁ {define R, the outside convective resistance as a function of T,)
2 -
Now, the heat transfer rate through the wall is equal to the heat transfer rate through the outside convective layer.
ie Q=T - Ty/Ran and

Q=(T,-T)/R,
When we equate these two equations and simplify, we get a quadratic equation in T,. Then solve it for T,. Once we
get Ty, we can easily calculate QO by applying any one of the above two equations.

We have:
e

Rwal.l Rﬂ

, 1350 - T, T, - 40
1.e. = 1

0.148 i i
7.85+0.08(T, — 40)

Simplifying, we get,
001184 T7 + 1.2146 T, — 1377.528 = 0
This is a quadratic equation in T,, whose roots are given by,

T, = —bt b dac
2a
where, 2 = 0.01184, b = 1.2146 and ¢ = -1377.528
On substituting, the values of 2, b and ¢, we get

~1.2146 £ J(1.2146)? + 4% 0.01184 x 1377.528
2% 0.01184

2=

Solving, we get
T, = 293.637°C
And Q = (1350 — 293.637}/0.148
= 7137.59 W.
Note: The above procedure is, however, cumbersome. But, with Mathcad, the problem is easily solved using the solve

block. Here, we start with a trial value of T, and then, write the constraint, i.e. the equality of the above two equations,
within the solve block, just after Given. Then, the command Find(T,} immediately gives the value of T,.

T, = 1000°C (Trinl value)
Given
Rwall - Rﬂ (T2 )
Find(T,} = 293.508
T, = 293.508°C (temperature of outside surface of furnace wally
To find heat transfer rate, Q:
Q= IIE_ T (considering the wall only)
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O=7131x10° W (the heat transfer rate per mb)

Verify:
Considering the convective layer:
T,-T, .
Q= Rzﬂ(Tz) fe, 0=7131x10°W (verified.)

Note: The values of ( obtained by the two methods are almost same, as it should be.

4.5 Thermal Contact Resistance

So far, while dealing with composite slabs, we assumed that there is perfect thermal contact at the interface, which
means that there is no temperature drop at the interface. However, in many cases, particularly when the mating
surfaces are rough, this may not be true and there will be a temperature drop at the interface. This temperature
drop at the interface is due to what is known as contact resistance.

Physical reasoning for contact resistance is explained with reference to Fig. 4.5.

Interface

- T
Q—> ( §/—+ o)
- T,

c2 ‘--._T2

Q ——>0Q

I’:'\’1 Rmntact R2

FIGURE 4.5 Thermal contact resistance

Figure. 4.5 shows an enlarged view of the interface between two slabs A and B. It may be observed that
though the surfaces are smooth, physical contact between A and B occurs only at a few points, i.e. at the peaks as
shown. Therefore, heat transfer occurs by conduction through this solid contact area and also by gas conduction
through the gas filling the interfacial voids. Note that there is no convection in the interfacial gas since the space
of interfacial voids is very small; Also, at the temperatures normally encountered, radiation is negligible. So, in
effect, resistance to heat transfer is by two mechanisms: '

(i) by solid conduction at the peaks, and

(ii) by gas conduction through the interfacial gas in the voids.

Of these two, solid conduction is usually negligible. Note that there is a temperature drop at the interface,
(T,, - T.,) and the temperature profile is not continuous. Thermal contact resistance is defined as the temperature
drop at the interface divided by the heat transfer rate per unit area.

AT _T,-T, m’C

R = Lol , ..(4.25
e 0 W (4.25)
A A
Interface thermal contact conductance is defined as the inverse of the contact resistance, and is given by:
w
k ! ..(4.26)

contact = 5, ¢ 2
R, m“C
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Thermal contact resistance depends on:
(i} surface roughness—smoother the surface, lesser the resistance
{ii) interface temperature—higher the temperature, lesser the resistance
(i) interface pressure—higher the pressure, lesser the resistance
(iv) type of material—softer the material, lesser the resistance
Thermal contact resistance may be reduced by:
(i) making the mating surfaces very smooth
(ii) inserting a layer of conducting grease {such as silicon based thermal grease, whose thermal conductivity
is about 50 times that of air) at the interface
(iii) inserting a ‘shim’ (thin foil} made of a soft material such as indium, lead, tin or silver between the
surfaces
(iv} filling the interstitial voids with'a gas of higher thermal conductivity than that of air (e.g. helium}
(v} increasing the interface pressure
{vi) in case of permanently bonded joints, contact resistance can be reduced by using an epoxy or soft solder
rich in lead, or a hard solder of gold/tin alloy
Table 4.1 below gives thermal contact resistance for metallic interfaces under vacuum conditions, at
different externally applied pressures.
Table 4.2 illustrates the effect of interfacial fluid on the thermal resistance, for the specific case of an
aluminium interface, with the surfaces having 10 #m roughness and the pressure being 10° N/m?
Thermal contact resistance of some typical solid/solid interfaces is given Table 4.3.

TABLE 4.1 Thermal contact resistance (R, x 104, mzK/W], with vacuum at interface

Stainless steel 6-25 07 -40
Copper 1-10 0.1-05
Magnesium 1.5-35 02-04
Aluminium 1.5-50 02-04

TABLE 4.2 Thermal contact resistance, R., for Al interface with surface roughness of 10 um
(Pressure = 10° N/m?)

Air 2.75
Helfium 1.05
Hydrogen 0.72
Silicon oil 0.525
Giycerine 0.265

TABLE 4.3 Thermal contact resistance, R_, for some solid/solid interfaces

Silicon chipfapped Al in air (27 — 500 kN/m?) 03-086
AVAI with indium foil filter (~100 kN/m®) ~0.07
$.5/8.8 with indium foil filtter (~3500 kN/m?) ~0.04
Al/Al with Dow coming 340 grease (~100 kN/m?) ~0.07
5.8/8.5 with Dow coming 340 grease {~3500 kN/m?) ~0.04
Silicon chip/Al with 0.02 mm epoxy 0.2-09
Brass/Brass with 15 gm tin solder 0.025 - 0.14
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Values of R, are given in heat transfer handbooks.

Generally, contact resistance is in series with other resistances and is taken into account by adding the same
to other resistances. If the area of contact is given (= A) and R, (in m“C/W) is known, then, R,/A will give the
contact resistance {(in C/W) for the given area.

Following problem will clarify the use of this concept.

Example 4.7. Consider a plane composite wall that is composed of twe materials of thermal conductivities k, =0.1 W/

{(mK}) and k; = 0.04 W/(mK) and thicknesses L, = 10 mm and Ly = 20 mm. The contact resistance at the interface between
the two materials is known to be 0.3 m*K/W. Material A adjoins a fluid at 200°C for which # = 10 W (m*K) and material
B adjoins a fluid for which k = 20 W/(m*K).
(i) What is the rate of heat transfer through a wall that is 2 m high and 2.5 m wide?
(ii) Determine the overall heat transfer coefficient.
(iii) Sketch the temperature distribution.

Solution, Refer to Fig. Example 4.7.

T, Interface T,
- ®
Q—» —>Q
2 : hy = 20 Wim'C
hy=10 Wim'C
T,=200°C T,=40°C

T » X

A
T !
T i Temperature profile
T
T |
T L
Ty E

» X
T, Ty Ter Tez T
(aR o SAVAVAVS SAVAVAVS SdVA¥ Q
R, R, R, R, R,

FIGURE Exomple 4.7 Two slabs with contact resistance at the interface

Data:
Ly=001m Lg:= 002 m k4 =001 W/(mK) kg := 0.04 W/(mK) T, = 200°C T, = 40°C

h,=10 W/ (m?K) By =20 W/(m'K)  A=225m" Ry = 03 {(m’K)/W

Since it is steady state heat transfer and there is no internal heat generation, we can apply the thermal resistance
concept. Overall temperature drop, i.e. the temperature potential, AT = {200 - 40) = 160 deg. C. And, the resistances
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involved are: two convective resistances, two conductive resistances of slabs A and B, and the contact thermal resistance
at the interface. All these resistances may be calculated for a heat transfer area of 5 m? and then added up together since
all of them are in series. Then, rate of heat transfer is calculated as, Q = AT/R,,,

Thermal resistances:

R, = h—LA— ie. R=002K/W {convective thermal resistance for fluid adjoining siab A)
Ry = " lA ie. R, =001 K/W (conwective thermal resistance for fluid adjoining slab B}
-
Ry:= kLA/; ie R, =002 K/W (conductive thermal resistance of slab A)
»
R, = kLBA ie. R, =01K/W (conductive thermal resistance of slab B)
5
R, = &L‘:ﬁ“ ie. R, =006 K/W (contact resistance at the inkerface for A = 5 m?)
Therefore, total thermal resistance, R,
Rt =Rg4+ R+ R, +Ry+ R, ie. Ry =021 K/W
Heat transfer rate, (Q:
L-T .
Q= = ie. Q=761905 W (heat transfer rate)
tot
Overall heat transfer coefficient, LI
We have: U-;= 1
AR,
ie U = 0.952 W/(m’K)

Temperature drops:

AT, =QR, ie. AT, = 15.238°C  (temperature drop in the convective layer adjoining to A)
Therefore, T, =T,- AT, ie. T, = 184.762°C (temperature at left face of A)

AT, = Q-R, re. AT, =15.238°C (temperature drop in the layer A)
Therefore, T. =T, -AT ie. T =16954°C

AT, = Q-R, ie. AT, = 45.714°C (temperature drop at the interface)
Therefore, TC =1, -AT, ie. Tc = 123.81°C

2 1 2

AT, = Q-R, ie. AT, = 76.19°C (temperature drop in the layer B)
Therefore, T, = o —AT e T, = 47.619°C (temperature at right face of B)

AT, = Q'R, ie. AT, =7.619°C (femperature drop in the convective layer adjoining to B)

Check: the temperature T, must equal 40°C

Therefore, Ty=T,-AT, ie. Ty =40°C  (temperature of fluid adjoining to B matches with data given)

4.6 Conduction with Variable Area

While considering Fourier’s law, namely,

Q=-kA T
the area A is normal to the direction of heat transfer. In case of plane slabs studied so far, the area normal to the
direction of heat flow was constant. However, this need not be the case always. In practice, many times, we come
across solid shapes like truncated cones, truncated wedges, developed cylinder,-etc. that may be used as
structural members, struts or supports. Analysis of heat transfer through such members is easily done by direct
integration of Fourier's equation, under the following conditions: )
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(i) One-dimensional conduction Q—+ | Quaene

(ii) Steady state heat transfer

(i) No internal heat generation T ] /

{iv) Variation of area can be expressed mathematically
as a function of x.

Consider a truncated cone as shown in Fig. 4.6.

The left face of the truncated solid is at the
coordinate position x; and the right face is at coordinate > a—
position x5, as shown. Let the left face be at temperature
T, and the right face at T,. Let Ty > T,. We would like to X,
find out the heat transfer rate {} and the temperature ¢
distribution in the solid, under steady state corditions. X \

Consider a differential control volume between x = x
and x = x + dx.

By applying the First law, it is clear that heat transfer FIGURE 4.6 Conduction through variable area
rate, Q, = (3,4 Since there is steady state, one-
dimensional heat transfer with no intermal heat generation, i.e. the heat transfer rate is the same through all
sections and is a constant, . Further, let us say that area A is a function of x and can be expressed mathemati-
cally as A = A{x).

To start with, we do not know the value of Q, but we do know that it is a constant; so, we can take {Q out of
the integral sign, while directly integrating Fourier’s equation,

Y

ax

T
Q = -KT) A(x)‘;—x 427)

for the general case when thermal conductivity, k, is a function of temperature, T.
Separating the variables,
Q dx = —k(T) A(x}dT ..(4.28)
Now, integrating between x = x; and x = 1, with corresponding T =Ty and T = T,
we write,

X T,
o) jﬁ - J'k(T) aT (429)
Alx)
X T
If k is a constant and does not vary with temperature, we can write,
Xy T,
0 Iﬂ-— =k _[d:r {(430)
A(x)
X T

Now, if T, and T, at any two corresponding x values of x, and x, are known, then Q can be calculated from
the Eq. 4.30. To obtain the temperature distribution in the solid, we use the condition that  is the same through
each layer in steady state, i.e. get Q, by integrating between x, and any  {i.e. temperature varying from T, to
T(x)) and equate this to the already obtained value of Q.

If k is varying with temperature, use Eq. 4.29 and follow the same procedure.

We illustrate the methed by solving a problem.

Example 4.8. A conical cylinder of length L and radii R, and R,, (Ry < Ry) is fully insulated on the outer surface. The two
ends are maintained at T, and T, (T; > T;). Considering one-dimensional steady state heat flow, derive expressions for
heat flow and temperature distribution.

As a numerical example, taking: R;=125em, R, =25am, L=20cm, T, =227°C, T, = 27°C, k = 40 W/(mC), find:

(i} steady state heat transfer rate, Q

(ii) temperature at mid-plane

(ili) temperature at a plane 15 cm from the small end

(iv) draw the temperature profile in the solid
Solution. Refer to Fig. Example 4.8.
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X Assumptions:
(i) steady state
(i) one-dimensional conduction, in X-direction
(since sides are insulated)
(iii} no internal heat generation
(iv} constant k

To determine heat transfer rate:
At any distance x from the origin, heat transfer rate (0, is

R
4 given by:
dT
Qx = 'kAIE
Insulated where, A is the area normal to the direction of heat
> X flow at x.

Radius at x is given by:
FIGURE Exomple 4.8 Conduction with variable area

-R
Ry=Ri+ 2—"1x=R, +Cux,

R -
L1 = constant

where C =

Now,
A, =xzRP=nm(R, +Cx)?
Therefore,

2dT

Q=-kmR, + Cx}y—— .(a)

Separating the variables and integrating from x = 0 to x = L and correspondingly, T =T, to T = T,, we get:
L T,
Q J-(R1 reper -jkﬂrdT (b
Note that ( is taken out of the integral sign since it is a constant and is the same at all sections,
Now, LHS of Eq. b is given by:

L L L
: dx 2 (R, + Cx)
ie QJ—= JR +Cx} “dx = Q) ——m——
(R, +C.x)? QJ ) ChC |
- 0 p
. ol 1 1 QL 1 1 o
e IHS = - = | ———-— | = -— ...(substituf C
ie ClR=cL X Ri-R| 5. R R, R (substituting for C)
1
L
ie. fHg = QL 1 _1)]_ oL
R,-K |R, R,| RE
since, C=(R,-R))/L

RHS of Eq. b is given by:
RHS = ka(T, - T,)
On equating LHS and RHS, we get

B Rlrry -1y
R, -R, Rl Rz
e, Q= rh-LRR Q)

L

Eq. ¢ is the desired expression for the heat transfer rate.
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To determine temperature distribution:
Let temperature at any x be T(x).

General procedure is to equate the expression for heat transfer at any x obtained by integrating Eq. b between x =0
and x = x (i.e. between T = T; and T = T(x)}, and the expression ¢ derived above for (I between the two sections at known
temperatures of T) and T,.

So, Eq. b becomes:
X d T(x}
x
—_— = = {kadT
Q.(l: (R, +C2) .[ g )

Now, LHS of Eq. d becomes:

LHS = QJ(R] +Cx)y tdx = Q[M} = _g_\:l_ 1 ]
0 b

-1C R, R, +C,

Remembering that C = (R; - Ry}/L and R, = R + C.x, we get:

s o QL [L_L] o [(RX—RI)] @)
(Rz - R}) Rl Rx (Rz - Rl) R1 R,
RHS of Eq. d becomes:
Ty
- Ikrr dT = ka(T, - T(x)) ' o)

T,

Equating Egs. € and f, we get
Ry Ri (R — Ry}kx(T, —T(x))

Q= IR _R) (g)
Now, equate the two expressions for Q, given by Egs. ¢ and g,
ka(h-T)R R, _ ka(l - TR R (R, - R}

L L(R,-R))
. L-T() _ KRR -R)

L-T, R (R, -R)

' R
. T, -T(x} R
e e ol
- -7 1- & )
RZ

Eq. h gives the expression for temperature distribution in the solid as a function of x. Again, remember that R, is the
radius at any x and is given by:
R, = Ry + (Ry - Ry).(x/1).
Now, let us solve the numerical example in Mathcad. Refer to Fig. Example 4.8.
Data:
R;:=00125m R;=0025m Ty = 227°C T, :=27°C L:=02m k:=40W/(mC)
Heat transfer rate,

_ k(G -T)RE,

Q: T (define Q, as given by the Eq. ¢, derived above)

On substituting values, we get
Q=73927W {heat transfer rate through the section)

Tempearature at mid-plane, ie. at x = 0.1 m:
x:=01m (at mid-plane of the seckion)

We have, at x = 0.1 m, R, = Ry + (R — Ry).(x/L)
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Therefore: R (x}y:=R + (R, ~ R,)»(%J (define R, as a function of x)

ie. R,(01)=01m (radius at x = 0.1 m)
Now, temperature distribution is given by Eq. h derived above:

— Rl —

; Ry (x) ) ,

From Eq. th): T(x):=T,- (T, -Ty)- X e (define T as a function of x)

-0

[ R, ]

Therefore,  T(0.1) = 93.667°C (temperature at mid-plane.)

Temperature at x = 15 em from LHS:
Simply substitute x = 0.15 in T{(x):

T{0.15) = 55.571°C (temperature at a plane 15 cm from LHS)
To draw the temperature profile within the solid:
In Mathcad, this is very easy. Define a range variable x, varying from ¥ = 0 to x = 0.2 m. Temperature T'(x) as a function
of x is already defined. From the graph pallette, choose x — v graph and fill in the place holders on the x-axis and y-axis.
Click anywhere outside the graph region and immediately the graph appears: (see Fig. Ex. 4.8(b) below)

x:=0001, ..,02 (define the range variable x, varying from O
to 0.2 m, at an interval of 0.01 m)

Temperature distribution in truncated cone

250 X is in metres and
K temperature in deg.C
200 \
150
) \
100 \

50 \

0 0.06 0.1 0.15 0.2
x

FIGURE Example 4.8(b)

Note from the graph that temperature at the mid-plane, i.e. at x = 0.1 m is 93.67°C, as calculated earlier.

Exercise: If the RHS, i.e. the larger diameter end, is at 227°C and the LHS is at 27°C, how does the heat transfer and the
temperature distribution change?

Example 4.9. A structural su1pport has the shape of a truncated cone (see Fig. Example 4.9) of length 0.2 m and its area
varies with x as A = (#/4).x". Its circumference is perfectly insulated. Thermal conductivity of the material varies with
temperature and is given by: K(T) = 14.695(1 + 0.0010208 T), where T is in deg. C and & is in W/(mC). What is the steady
state heat transfer rate through this strut if the two ends are maintained at 400°C and 150°C, as shown? Also, find the
temperature at the mid-plane. Draw the temperature profile in the solid.

Solutien.
Data: Afx) = %-:ﬁ m’*  x, =008m ¥%:=028m Li=x,-x ie L=02m
k(T) = 14.695(1 + 0.0010208T) W/{(mC} T, = 400°C T, := 150°C
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Insulated k(T) = 14.695 (1 + 0.0010208 T)

400°C /150°C
Q— P ——>Q
X,=0.08m \
X,=0.28m
X < >
L=02m

FIGURE Example 4.9 Conduction with variable area and variable thermal conductivity

Assumptions:
(i) steady state conduction
(ii) one-dimensional conduction
(iii} no internal heat generation
(iv) k varying with temperature.
To find heat transfer rate, (:
Since this is a case of steady state, one-dimensional conduction, with no internal heat generation, Q is constant through
each section in the solid; so, we can directly integrate Fourier’s equation, keeping the Q outside the integral. Integrating
between two known temperatures at x = x; and x = x;, we calculate (.
Q = -k(T) A(x) dT/dx ...(a)
Substituting for k(T) and A(x):
4T

. b}

O = —14.695 % (1 + 0.0010208 T) X {—E—f]

ie. Qd—f = -14.695 x (1 + 0.0010208 T} x % x dT )
X

Since (O is constant, separating the variables and integrating between 1 = 0.08 and x = 0.28 (with T; = 400°C and T
= 150°C), we get:

0.28 130
Q Jd—’; = -11.5356 j {1 + 0.0010208 T) x dT {d)
U‘(Ex 400
_1 0.28 TZ 150
ie. Q [— ﬁz] = -11.5356 % [T +0.0010208 x —}
2x o 2 0
ie. ([78.125 — 6.378] = -11.5356 x [(150 — 400) + w x (1502 ~ 4002)]
On simplifying, we get
(Q x 71.747 = 3692.315
3692.315
ie. =Z——" =5147W
e Q=77 =° ©

i.e. the steady state heat transfer rate for the solid is 5147 W.
In Mathead, above calculation is done just in one step; there is no need to expand the integral and substitute the
values. We write directly from Eq. a:
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"l

~ | k(T)dT
Q=s5+—— ie Q=51506W (heat fransfer rate through the section)

1
jA(x} dx

This value of {2 matches with the value obtained earlier.

To find temperature at mid-plane, i.e. at x = 0.18 m:

Let the temperature at mid-plane be T,,. Since,  is a constant, which is already calculated, integrate between x = 0.08

and x = 0.18 with corresponding T = 400°C and T = T,,; we get a quadratic equation in T, and solving it, get T,
Integrating Eq. ¢ between x = 0.08 and x = 0.18, with T = 400°C and T = T\ we get,

0.18 T
1 2
Q[—Z—F] = -11.5356 x [T +0.0010208 x _T;] ()

0.08 400

0.0010208
2

5147 x [78.125 - 15.432] = ~11.5356 [(T,,, ~ 400) + x(T2 - 4002)]

On simplifying, we get,
58.878 x 107! x T,2 + 11.5356 x T, - 2329.48 = 0 (g)

Eq. g is a quadratic in T,,, and its roots are given by,

—_— 27
T biyb® —4ac &)

m

2q
where, 2 = 58.878 x 107, b = 11.5356 and ¢ = -2329.48
Substituting:
L, _ -115356% JO15356)" + 4 x 58.878 x 10 * x 2329.48
" 2% 58,878 x 107

On solving, we get,
T, = 184599°C
ie. temperature at the mid-plane is 184.599°C,
Above calculation is rather laborious to perform by hand. In Mathcad, it solved very easily using the solve block:

Temperature at the mid-plane, i.e. at x = 0,18 m:
Let the temperature at mid-plane (x = 0.18 m) be T,,,. Integrate between x = 0.08 m and x = 0.18 m and use the condition
that heat flow rate is the same (already calculated) through all sections. Use the solve block starting with a trial value of
T
x;=018 m (2t mid-plane)
T, = 250°C (trial value of T,,)

Given

X 1 ~ T
Q.J: A dx = J;k{T)dT

Temp(x) := Find(T,,) (temperature at any x is defined using the solve book)
Note that instead of just finding T,, by typing T,, =, we have defined it as equal to a function Temp(x) within the
solve block. Advantage of doing this is that the same solve block repeatedly does the calculations for all values of x as

desired, taking each time the starting trial value of temperature as 250. This facility is a great advantage and is used
below while drawing the temperature profile.

Therefore, Temp{0.18) = 184.514 (temperature at x = 0.18 m)
ie. T, = 184.514°C (temperature gt mid-plane)
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Verify temperature at x = 0.08 m and x = 0.28 m:
- Temp (0.08) = 400°C (verified)
Temp{0.28) = 150°C {verified)
Note that the mid-plane temperature obtained now matches the value obtained earlier.

To draw the temperature profile:
Define the range variable x from 0.08 m to 0.28 m at an interval of 0.01 m. Then, choose the x - y plot from the graph
palette and fill in the place holders on the x-axis and y-axis. Click anywhere outside the graph region and the graph
appears immediately: See Fig. Ex. 4.9(b)
x := 0.08, 0.09, .., 0.28 {define range variable x, varying from 0.08 m to 028 m,
at inferval of 0.01 m)

Temperature profile
{varying area & thermal conductivity)

400 Temperature in deg.C
and x in metres

300
Temp (x}

200 P~
\
‘-—._.__‘_—‘-_‘—

100
0.1 0.15 02 6.25

X

FIGURE Ex. 4.9{b)

Note: Verify from the graph that the temperature at the two ends and the mid-plane match with the values obtained
earlier.

Also, observe the ease with which the temperature profile is drawn—calculation of temperature at each value of x
and drawing the graph is done in one step; if this has to be done in hand calculation, to determine T at each x, one will
have to solve a quadratic equation for T at each point. Obviously, it is a very tedious job.

If k is a constant, how does heat transfer and temperature distribution change?
Let k = 18.82 W/(mC)
Again, since (2 is constant through each section in the solid, we can directly integrate Fourier's equation, keeping
the () outside the integral. Integrating between two known temperatures at x = x, and X = x,, we calculate Q.
Q = ~kA(x) dT/dx
x, T,

. dx
ie. QIA(x) = k‘de

X,

In Mathcad, this is solved very easily:
From the above equation, we write for Q:

kh-T) |

J“2 .de
h, AlX)

Note that this value of Q is the same as obtained earlier with variable k.

Q= e =51504 W (heat transfer rate through the section)
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Temperature profile:
Let the temperature at any x be T(x). Integrate between x = 0.08 m and ¥ = x and use the condition that heat flow rate is
same (already calculated) through all sections.

We have:
b T,
dx
= -k |dT
QJ. A(x) j
ks T
x Tiny
dx
— = —k |dT =-k[T(x)-T
ie of -+ | [T0) - 7]
# ke
Le.
T(x) =T,- = 1 dx (defines temperature as a function of x)
kX Ax)
Temperature at mid-plane:
Put x = 0.18 m in T{x):
T(0.18) = 181.55°C (temperature at midplane)

Note that with constant k, the mid-plane temperature is 181.55°C whereas with variable &, it was 184.514°C.

To draw the temperature profile:
Detine the range variable x from 0.08 m to 0.28 m at an interval of 0.01 m. Then, choose the x - y plot from the graph
palette; type x in the place holder on the x-axis and Temp(x}, T(x) in the place holder on the y-axis. Click anywhere
outside the graph region; graphs for temperature distribution with variable k as well as with conslant &, appear
immediately: See Fig. Ex. 4.9(c)
x = 0.08, 0.09, ..., 0.28 (define range variable x, varying from 0.08 m fo
0.28 m, at an interval of 0.01 m)

Temperature profile (varying & constant k)

350 \
.

Temp (X) 300

Temperature in deg.C
and x in metres

T(x)
by
Ry
250
200 T
e
150454 015 02 0.25
——— Variable k ¥
~-~-Const. k

FIGURE Ex. 4.9(c)

It may be observed from the graph that with constant k assumption, temperature is lower throughout, as compared
to the case of variable k.

4.7 Cylindrical Systems

Cylindrical systems are practically important because of their common application in varied industries, power
plants, refineries, etc. Cylindrical geometry is popular for applications in heat exchangers, condensers, storage
tanks, etc.
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Here, we analyse the cylindrical shell for heat transfer in one-dimensional conduction, i.e. it is assumed that
temperature gradients are significant only in the radial direction; so, heat flow occurs only in the radial direction.
Now, it is important to remember that for a cylindrical system with heat flow in the radial direction, the area
normal to the direction of heat flow is not a constant, but varies with r; this was not the case for a plane slab,
where A remained constant for all x.

Consider a long cylinder of length L, inside radius 7; and outside radius r,. Inner and outer surfaces are at
uniform temperatures of T, and T, respectively, see Fig. 4.7.

Q
__/
T Temperature profile,
! fogarithmic
k
TD

A o

o i TD ' »

I Q—»—o AN —8—»Q o
R = In{rfrf{(2mkL)
(a) Cylindrical system and the equivalent thermal circuit {b) Variation of temperature along the radius

FIGURE 4.7 Heat transfer through a cylindrical shell

Assumptions:
{i) Steady state conduction
(i) One-dimensional conduction, in the r direction only
(iliy Homogeneous, isotropic material with constant k
(iv) No internal heat generation.
Now, this is a cylindrical system; so, it is logical that we start with the general differential equation for one-
dimensional conduction, in cylindrical coordinates. So, we have, from Eg. 3.17:
1a( aT) 19T 7T 4, 19T
=l s ——
r ar( ar) 2 9¢° ¥k aodr
In this case:
aT/at = 0, since it is steady state conduction
aT/d¢ = 0 = 9T/dz, since it is one-dimensional conduction, in the r direction only
g,/k = 0, since there is no internal heat generation.
. Therefore, the controlling differential equation for the cylindrical system, under the above mentioned
stipulations, becomes:

7 13T

q 290 g {431
dr r or

Note that now, it is not partial derivative, since there is only ene variable, r.

We have to solve this differential equation to get the temperature distribution along r and then apply

Fourier’s law to calculate the heat flux at any position.
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Muitiplying Eq. 4.31 by r, we get

d*T  aT
r—r +— =0
dr? ar
ie, i[r al) =0
dr\ or
Integrating,
or
—_—=C
’ or !
or, B_T = El {4.32)
ar 4
Integrating again,
T(r) =C, In{ry + C; ..(4.33)

where, C, and C; are constants of integration.

Eq. 4.33 gives the temperature distribution as a function of radius.

C; and C, are found out by applying the two B.C.’s:

(i) atr=r,T=T,

(i) atr=r,T=T,
B.C. {i) gives, T;=Ciln{r)+ C, -{a}
B.C. (ii} gives, T,=C In(r,} + G, (b}
Subtracting Eq. b from Eg. a:

Ti=To = CyInri/r,)

e. c =l  L-T
T i
and, from Eq, a:
C,=T— To -1 In(r;)

|

o

Substituting C, and C, in Eq. 4.33, we get

]

—

T(r) = T*’—_Em(r) +T - u1n(r,.)
of2) ()
h £
ie. Ty =T + L% h{lj (4.34)
L}

ln[_’OJ
i

Eq. 4.34 is the desired equation for temperature distribution along the radius. Note that the temperature
distribution is logarithmic for the cylindrical system, whereas it was linear for a plane slab. Temperature
distribution for the cylindrical system is sketched in Fig. 4.7(b).

Eq. 4.34 is written in non-dimensional form as follows:

ln[r]
T(n-T _ T

i
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For thin cylinders, r; = ,, and then the temperature distribution within the shell is almost linear. s
Next, to find the heat transfer rate, Q:

We apply the Fourier’s law. v
Considering the inner radius 7, ,/

dT

Q=-kA,— =k 27z'r,-L—qi _Ausing Eq. (4.32))

dr r=r 1

ie. Q=-k zxrif,ﬂlT—‘
ti

. 2akL(T; - T,
ie. o 2AkLT - To) (4.36)

ln( rﬂ]
fi

Eq. 4.36 gives the desired expression for rate of heat transfer through the cylindrical system.

Note that ( is dependent on In(r,/r;} rather than on {r, - r,). Implication of this is as follows:

For the same AT, k and L, heat transfer rate through a cylindrical shell of 5 cm ID and 10 cm OD is the same
as that through a shell of 10 cm ID and 20 cm OD, though in the first case, shell thickness is 5 cm and in the
second case, the shell thickness is 10 cm.

Now, writing Eq. 4.36 in a form analogous to Ohm's law:

Q=£l= T}"To
Pl | T

i

2rkL

Immediately, we observe that thermal resistance for conduction for a cylindrical shell is given by,

nf)

R , =
YT o xkL

(437)

Alternatively

For steady state, one-dimensional conduction, with no heat generation,
since the heat flow rate is the same and constant at every crosssection,
we can directly integrate the Fourier’s equation between the two known
temperatures (and the corresponding, known radii), keeping Q out of
the integral sign; this will give us Q. Then, atany r, the temperature T{r)
is calculated by integrating between r = r;and r =r {with T = T; and
T = T{r}), and equating the O obtained now to the expression for Q
obtained earlier. Refer to Fig. 4.8.

At any radius r, consider a thin cylindrical shell of thickness dr; let
the temperature differential across this thin layer be dT. Then, in steady
state, rate of heat transfer through this layer Q, can be written from
Fourier’s law, to be equal to:

Q =—kA,—t;l,where A, =2mrL >
r
dr FIGURE 4.8 Cylindrical system
ie. Q%L = —2akldT (4.38)
r

Integrating Eq. 4.38 from 7, to r, (with temperature from T; to T,),
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er{r—” = -2 7kL(T, - T)

fi

2kL(T; - T,)

{3

To get the temperature profile within the cylindrical shell:
At any radius 7, let the temperature be T(r).
Integrating Eq. 4.38 from ¢, to r,

or, Q= (same as Eq. 4.36)

_ 27kL(T; - T(7))

;)

Now, apply the principle that in steady state, ( is the same through each layer, i.e. equate Egs. 4.36 and 4.39:
2rk(T; - T,)  2xkL(T; - T{(r))

N
] h,
ln[L)
TiH-T i

ie. = -..same as Eq. 4.35

ey
L

Concept of log mean area. For a plane slab, we have the simple relation for the thermal resistance, ie. R, =
L/(kA), where L is the thickness of the slab, & is the thermal conductivity and A is the cross-sectional area normal
to the direction of heat flow. .

Now, many times, it is desirable to write the thermal resistance of the cylindrical system also in a form
analogous to this form of R,;,,. Then, we take L as equivalent to (r,—1;), and k is the thermal conductivity, and let
A, be an equivalent area of the cylindrical system, which is to be found out. Then, we write:

(%
fi Yo — X

R
¥ 2xkL T kA,

Q2 (.39

A 2 2ELn) A -A A 4

oe) (2 (A
& 27y A;

where, A, = 2xr, = outside surface area of the cylindrical shell
A; = 277; = inside surface area of the cylindrical shell
Ay is known as the log mean area for the cylindrical system.

Note that physically, A, is the area of an equivalent slab having the same thermal conductivity k, whose
thickness is equal to the thickness of the cylindrical shell, and has the same heat flow rate as for the cylindrical
shell.

In practice, concept of log mean area is useful in analysing the lagging (i.e. insulation) of steam pipes.

If (A,/A;) < 2, then A,, can be approximated to be the arithmetic average of A; and 4;
ie. Ay =(A, + A)/2
Example 4.10, A cylindrical insulation for a steam pipe has an inside radius r; = 6 cm, outside radius , = 8 cm and k =

0.5 W/(mC). The inside surface of the insulation is at a temperature T, = 430°C and the outside surface is at T, = 30°C.
Determine:

Therefore, -.(4.40)
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{i) heat loss per metre length of this insulation k =0.5 WImC)
(i) temperature at mid-thickness of the insulation, and
(iii) draw the temperature profile along the radius.
Solution. Data:
r, = 006 m r, = 0.08 m L=1m T; =
430°C T, = 30°C k:= 05 W/(mC)
Heat transfer rate, Q:

Since it is a case of steady state, one-dimensional conduction,
with no internal heat generation, we can apply the thermal re-

sistance concept, i.e. Q = AT/R,.
Therefore, r,=0.06m
h{fo_] r,=008m
¥
R, = ——% ie R, =0092C/W T T
eyt b, i i o
2-7kL Q—»—eo—"NN—o—>Q
(thermal resistance of the cylindrical shell) Rcyl = In{r /r.¥(2nkL)
Therefore, Q:= T-1 FIGURE Example 4.10 Heat transfer through
Rey cylindrical insulation
ie. Q = 4.368 x 10° W (heat transfer rate/n length.)

Temperature at mid-thickness of insulation, i.e. at r = 0.07 m:
Temperature distribution in the cylindrical shell is given by Eq. 435,

In| =
T(ry)=-T; _ \n

L-T . In 123
T

ie. T(r) =T, +(T,-T)

{define temperature us a function of r)

ie. T{0.07) = 215.665°C (termperature at mid-thickness of tnsulation)
Temperature profile in the insulation:
In Mathcad, this is very easy to draw. We already have expression for T(r), i.e. temperature as a function of r, Let us
define the range variable 7, starting from r = 006 m to r = 0.08 m, varying in steps of 0.001 m. Then, from the graph
palette choose x - y graph, fill in 7 in the place holder of x-axis and T{r} in the place holder of y-axis. Click anywhere
outside the graph region and the graph appears immediately: See Fig. Ex. 4.10(b}
r = 0.06, 0.061, ..., 0.08 (define range variable, r; first value = 0.06, next
value = 0.061 m, last value = 0.08 m}
Obviously, temperature distribution is logarithmic, as seen from the expression for T(r).

4.8 Composite Cylinders
Composite cylinders belong to a practically important category, €.g. lagged pipes carrying steam or other high
temperature fluids, insulated pipes carrying coolant or cryogenic fiuids, insulated tanks, etc. and, these are ana-
lysed as composite cylinders.

Consider a system of composite cylinders as shown in Fig. 4.9.

A cylinder of inner radius r, outer radius , and thermal conductivity k, is covered with another layer (say,
insulation) of radius r;and thermal conductivity k;. There is perfect thermal contact at the interface between the
two layers, i.e. there is no temperature drop at the interface. Let T, be the interface temperature. Further, let a hot
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Temperature profile in cylindrical system

500
400
300
T T(r)in deg.C
rin metres
200
100
0
0.06 0.065 0.07 0.075 0.08
r
FIGURE Ex. 4.10(b}
ky
K
Ty
¥? Q
",
7, T
DA
Ta >
g
— ,
r ry
fa r,
s ’ ’ T, —A / Temperature profile
7 | ol
T Ty T
Q= AN ANASANA AN o> T, 5
R, Ry R, R, Ty —‘"—A
(a) Composite cylinders and (b) Composite cylinders and
equivalent thermal circuit temperature profile

FIGURE 4.9 Composite cylinders, equivalent themal circuit and temperature profile

fluid at a temperature T, flow through the inner pipe with a heat transfer coefficient k, On the outside, let the
heat be lost to a cold fluid at a temperature T, flowing with a heat transfer coefficient of ;. Let I be the length of

the cylindrical system.

Assumptions:
{i) Steady state heat flow
(if) One-dimensional conduction in the r direction only
(iiiy No internal heat generation
(iv) Perfect thermal contact between layers,
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Heat transfer occurs from inside to outside in the positive r direction, i.e. heat transfer occurs by convection
from the hot fluid at T, to the inner wall of inner cylindrical layer at T,, then by conduction through the inner
cylindrical layer, again by conduction through the outer cylindrical layer and finally by convection from outer
wall of outer cylindrical layer at T, to the cold fluid at T,.

Under the given stipulations, it is clear that heat flow rate, Q through each layer is the same.

Let us write separately the heat flow equations for these 4 layers:

Convection from the hot fluid to inner wall at T
Q=h, 2rr)L(T,-T,), .. from Newton’s Law of Cooling

__ Q2
= h,@anl) QR : . ~()

Conduction through first cylindrical layer:
27k L(T, - Ty)

il A

ie. (T, T}

i

Q ]n(fz

n ]
= QR, .{b)

T, -T,) = —— 12
B G- =

Conduction through second cylindrical layer:
_ 2mkL(T; - T3)

)
Lo}

. (T_T)_____rz = QR {©
e 2T kL 2
Convection from the outer wall at T, to cold fiuid at T);

Q=hQ2rary)L (T5-Tp), (from Newton’s Law of Cooling)
. Q
e Ty-T,) = ———— = QR Ad)
- T =y~ 2

Adding Egs. a, b, c and d,
(T,-T,) = Q(R, + Ry + Ry + Ry}
L-T LT

ie. = = .(4.41)
e Q Rﬂ+R1+R2+Rb ZR (
ie. 0= 2L ~ 1) - (242)
ln[-’-’2 J In (r?‘]
t o g, A\R)
by Iy Ky k;
1f there are N concentric cylinders, we can write,
Q= ML(T“; T) (443)
r
A,L._i__ 1 +21|_n[ﬁtl_]
har Bprva1 Atky ™
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Basically, remember that in the composite cylindrical system just studied, the various resistances such as the
two convective resistances and the two conductive resistances are all in series. Then, by analogy with the rules of
electrical circuit, total thermal resistance is the sum of the individual resistances. Once these individual
resistances are identified and calculated, it is a simple matter to calculate the heat flow rate by analogy with
Ohm’s law, i.e. Q = AT/R,,,. Temperatures at the interfaces are calculated by using the fact that () is the same
through each layer and by applying the analogy of Ohm'’s law for each layer by turn.

4.9 Overall Heat Transfer Coefficient for the Cylindrical System
Referring to Fig. 4.9, it is clear that heat transfer occurs from hot fluid at T, to the inner cylinder by convection,
then through the inner and outer cylindrical shells by conduction and then to the outer cold fluid at T, by
convection. In many practical applications, the interface temperatures are not known but only the hot and cold
fluid temperatures, i.e. T, and T, are known. Here, (T, — T}) is the overall temperature difference because of which
heat flow occurs. We would rather like to write the heat transfer rate in terms of the known overall temperature
difference, as follows,
Q=UA ATDVE[‘H]] =UA (Ta - Tb)
where L is an overall heat transfer coefficient and A is the area normal to the direction of heat flow. In the case of
a plane slab, A was a constant with x; however, in the case of a cylindrical system, area normal to the direction of
heat flow is 2z rL, and clearly, this varies with r. Therefore, while dealing with cylindrical systems, we have to
specify as to which area U is based on, i.e. whether it is based on inside area or outside area. (Generally, LI is
based on outside area since pipes are specified on outside diameters.)
We write,
Q= uiAi(Tr; - Tb) = qun(Tu - Ty ~(4.44)

where, U, = overall heat transfer coefficient based on inside area

U, = overall heat transfer coefficient based on outside area

A; = heat transfer area on inside

A, = heat transfer area on outside

Comparing Eq. 4.44 with Eq. 4.41, we get,

T,-T
Q = et = AT, - Ty = U AT, - Ty) {(4.45)
ie. UA; = U,A, = XI,R .(4.46)
Therefore,
1
u,= ...(4.47a)
A,-ZR
1
U= —s— ..(4.47b)
A, ZR
We can also write,
1 1
u, = =
2rnLx 1 2 1

2znLlh, 27kl 2xk L 2znsLhy,
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ie. U, = ..(4.48a)
RN ATRE AR N AN LR
hy ki n) (k r) o \Ts)hy
1 7 1

3],
N n r +_—l

1
2zrlh, 27kl 2rkL 27mLhy,

1

U, = - .
AL (B a2 e B 2y L
nh, k1 f k> P hy,

Note: Egs. 4.48 a and 4.48 b give U; and 1, in terms of the inside and outside radii. You need not memorise
them. To calculate U, or LI, while solving numerical problems, just remember Eq. 4.46, namely:

1

UA; = UA, = F

Once the total thermal resistance ZR is calculated, U; or
U, is easily found out from Eq. 4.46.
The concept of overall heat transfer coefficient in
cylindrical systems is often useful in heat exchanger designs, T, =
since cylindrical geometry is a popular choice in heat
exchangers.

ie. ...{4.48b)

Asbestos, &k = 0.082 W/(mK)
Magnesia, k = 0.07 W/(mK)

Exomple 4.11. A 10 cm OD pipe carrying saturated steam at a
temperature of 195°C is lagged to 20 cm diameter with magnesia
and further lagged with laminated asbestos to 25 cm diameter.
The entire pipe is further protected by a layer of canvas. If the
temperature under the canvas is 20°C, find the mass of steam
condensed in 8 hrs on a 100 m length of pipe. Take thermal con-

ductivity of magnesia as 0.07 W/{mK) and that of asbestos as Q—re—AAN & A AN — »Q
0.082 W/(mK). Neglect the thermal resistance of the pipe P R

material. mag ash

(M.U. Dec. 1997) FIGURE Exomple 4.11 Heat transfer in
Solution. logged pipe and the equivalent thermal circuit
Data:

rp=005m r=010m r=0125m L:=100m T, :=195C T, = 20°C
Ko = 0082 W/mK ke = 007 W/mK

Thermal resistances:
]n[ 5 ]
¥
R, = — 1

5 = (define thermal resistance of cylindrical magnesia shell)
2Tk ag L

ie. Ry = 0.016 C/W (thermal resistance of tmagnesiz)
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r:
R, = — A2 (define thermal resistance of cylindrical asbestos shell)
2-mwkygy-L

ie. R = 4331 % 107° C/W (thermal resistance of asbestos)
Ryt = R, + Roag 1 Ry = 0,02 C/W (total thermal resistance)
Heat transfer rate,
n-T
Q= 1= 73 e Q=871x10°wW (heat transfer rate)
Rtot
To calculate steam condensed in 8 hrs:
hg = 1951 k] /kg (atent heat of evaporation for steam at 195°C...from Steamr Tables)
Therefore,
3
x 107"
m= QTm-3600.8
i
ie " om = 128581 kg (condensation of steam in 8 hrs.)

Note: If we need to calculate the interface temperature T,, apply the equivalent Ohm’s law, keeping in mind that heat
transfer rate through each layer is constant. For magnesia layer, wer can write: Q = (T, - T,)/ Rinag-

To calculate interface temperature, Ty
From Q = (T, -T;)/ R, we get:

T =T - QR € (temperature at the interface)
Le. T, = 57.725°C (temperature at the interface)
Check: with reference to the asbestos layer, Q = (T, - T;)/R asb Yerify this:
Heat transfer through asbestos layer:

T,
9‘% =871 x 10° W {verified)

Exomple 4.12.  If in Example 4.11, there is a contact resistance of 0.02 (m*K)/W between the pipe surface and magnesia,
and 0.05 (m’K)/W at the interface between magnesia and asbestos, calculate the new value of heat transfer rate. Also,
calculate the temperature drops at the two interfaces.

Solution.

Data:
ry =005 m 1y =010 m ry=0125 m L =100 m T = 195°C Ty :=20°C ko =0.082 W/mK
kmg =007 W/mK Regae = 002 m*K/W (contact resistance belween pipe and magnesia)
Reonz = 0.05 m?K/W (comtact resistance hetween magnesia and asbestos)
Equivalent thermal circuit and temperature profites are shown in Fig, Example 4.12,

In| 2
i

ash

Thermal resistances:

Rag = Tk L (define thermal resistance of cylindrical magnesia shell)
mag,
L.e. Rppeg = 0.016 C/W (thermal resistance of magnesia)

(]
R, = z
T dmkg L

ie. R,y = 4331 x 107 C/W (thermal resistance of ashestos)

(define thermal resistance of asbestos shell)
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T, Tes T T T, Asbestos,
Q > ANNSANANSANN AN 8> k= 0.082 Wi(mK)
Rc1 Rmag RCZ Rasb Magnesia,
k= 0.07 Wi{mK)
FIGURE Example 4.12(a} Equivalent thermal circuit T,
including contact resistances Q
. T, =[195°C
Contact resistances: —— T, = 20°C
Between the pipe surface and magnesia, contact resistance
is given as R, = 0.02 (m*K)/W; note that this resistance r,={0.05m g
is per m? of surface. Actual surface area is (2xr)L. There- Jo.1 >
fore, contact resistance R4 = 0.02/(2 zr( L), K/W. 1,010 m
Similarly, at the interface between magnesia and as- r;=0.125m
bestos, contact resistance is given as (.05 {m?/K)/W and
the surface area at the interface is {(24r,L} and therefore, AT, =5.176°C
contact resistance R, = 0.05/{22r,L), K/W.
R, = —28 crw (define confact A7 o "y
2.zn-L resistance between mag = 128.139°C
pive and magnesia)
ie. R, = 6.366 x 107 C/W {contact resistance I 2
between pipe and AT, =6.47°C- =
magnesia)  AT,q = 35.21 5°C-+‘}
R, = 5—‘% C/W  (define comtact resistance
Tty .
: between magnesia and  prGURE Example 4.12(b) Temperature profile in
ashestos)
the layers
ie R, = 7958 x 107 C/W {contact resistarice between magnesia and asbestos)
Therefore,
Ry = Rogp + Rppgg + R + Ry C/W (total thermal resistance)
Le. Ry = 0022 C/W
Heat transfer rate, (:
T,-T,
Q= —2 W (heat transfer rate)
thba]
ie Q=8131x1°W (heat transfer rate)

Note that as a result of including the thermal contact resistances, obviously the total resistance to heat flow
increases and the new value of heat transfer rate is reduced to 8131 W from the earlier value of 8710 W.
Temperature drops at the interface:
Let AT, be the temperature drop at interface 1, i.e. between pipe surface and magnesia and AT, the temperature drop at
interface 2, i.e. between magnesia and asbestos. From analogy with Ohm’s law, we have:

AT, = R.,-Q°C (temperature drop at interface between pipe and magnesia)

ie. AT, = 5.176°C (temperature drop at interface belween pipe and magnesia)
And,

AT, == R ,Q°C (temperature drop at interface between magnesia and asbestos)

ie. AT, = 647°C (temperature drop at interface between magnesia and asbestos)
Also,

AT g = Rinag@°C (ternperature drop in magnesia layer)

ie. AT g = 128.135°C (temperature drop in magnesia layer)

AT, == R g Q°C (temperature drop in asbestos layer)

ie. AT, = 35.215°C (temperature drop in asbestos layer)
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Check: Total temperature drop must be equal to (195 - 20} = 175°C. Verify this:

ATy = ATy + AT + AT, + AT, (define total AT
ie ATy = 175°C (total temperature drop...verified.)
Exomple 4.13. A metal (k = 45 W/(mC)) steam pipe of 5 cm ID and 6.5 cm OD is lagged with 2.75 cm radial thickness of
high temperature insulation having thermal conductivity of 1.1 W/{mC). Convective heat transfer coefficients on the

inside and outside surfaces are k; = 4650 W/(m’K) and h, = 11.5 W/(m’K), respectively. If the steam temperature is
200°C and the ambient temperature is 25°C, calculate:
(i} heat loss per metre length of pipe
(ii) temperature at the interfaces, and
(iii} overall heat transfer coefficients referred to inside and outside surfaces (i.e. calculate U; and U,).
Solution. This is a case of steady state, one-dimensional heat transfer with no internal heat generation in any of the
layers. So, thermal resistance concept is applicable and is used to find out the rate of heat transfer, Q. Also, the principle
that ( is the same through each layer is used along with the equivalent Ohm’s law to determine the temperatures at the
interfaces. Overall heat transfer coefficients are determined by applying Eq. 4.46, namely, .
WA, =LA, =1/2R
See Figure Example 4.13.

Insulation, k = 1.1 Wi(mK)

Pipe
P
Q 2
hy, = 11.5 Wi(m °C)
T, T,=25°C
h, = 4650 Wi(m™°C
Ty
T, =200°C
r,=0.025m T, T, T, T, T,
> R S AAYE SAVAVAV. cAVAVAVS SAVAVAVE S K¢
fz =0.0325m - Ra Rpipe Rins Rb
r,=006m
FIGURE Example 4.13(a) Lagged steam pipe, FIGURE Example 4.13(b} Equivalent thermal circuit

with convection

Data:
rn=0025m r:=00825m r:=006m Ky, =45 W/(mK) ks := 1.1 W/ (mK) Li=1m
T,:=200°C T,:=25°C  h :=4650 W/(m®K)  h, = 11.5 W/(m?K)

Thermal resistances:

Heat transfer occurs from the inside to outside, as shown in Fig. Example 4.14. Starting from inside, first there is convec-
tive resistance between steam and the pipe surface, then conductive resistances through the pipe material and insulation,
then again, convective resistance between the outer surface and the ambient. Let us calculate these resistances, by turn:

ln[i]
h

Rpipe 1= m, C/W {define thermal resistance of pipe)
ie. Rpipe = 9279 % 1074 C/w (thermal resistance of pipe)
ln[ﬁ}
r
Ry = —24—, C/W {define thermal resistance of insulation)
27k, L
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Le. R = 0.089 C/W (thermal resistance of insulation)

1 - , ; . L
R, == ———, C/W {define convective resistances on the inside surface)
2-7r-L
Le. R, = 1369 x 107° C/W (convective resistance on the inside surface)
1 , . . .
R, = ————, C/W {define convective resistance on the oulside surface)
h, 2 mky-L
ie R,=0231 C/W (convective resistance on the outside surface)
Therefore, total resistance:
Riot = Rpipe + Rins + Ry + Ry, C/W (since all resistances are in series)
Le. Ry = 0322 C/W (total thermal resistance)

Heat transfer rate, Q is equal to overall temperature difference divided by total thermal resistance, by analogy with
Ohm's law

Ta B Tb
= — W (define Q)
Rtot
ie. Q=544.046 W (heat transfer rate)

Temperatures at the interfaces:
For each layer, (2 is the same and is equal to the temperature drop through that layer divided by the thermal resistance
of that particular layer. Apply this for the inside convective layer, the two conductive layers through pipe and
insulation, and then again, the convective layer on the outside, by turn:

(T,-T}= Q.R,

(Ty - Ty = QR

(T3 = Ty3) = Q-Ring

(I;-T) = QR
We get:
T, =T,-QR,°C (define Ty)
ie T, = 199.255°C (temperature of inside surface of pipe}
T =T = QRpp"C (define T,)
ie T, = 198.75°C (temperature of interface of pipe and insulation)
Ty = Ty - Q-Ryp’C (define T3)
ie. T,y = 150.489°C (temperature of outer surface of insulation)

Finally, check for value of T

i€

T, := Ty - Q-R,°C
T, = 25°C

(define Ty)
(matches with the data...verified)

Overall heat transfer coefficients, U, and U
Overall heat transfer coefficients are determined by applying Eq. (4.46), namely, U,A, = U,A, = 1/ZR: Remember:
A, =2nrr.Land A, = 27r,.L

1 2
U= ——— W/(m°C define U,
= s WO (define UL
e U, = 19.791 W/(m*C) {overall heat transfer coefficient based on inside area)
And,
1
U=—— W/(m} define U
T (2mn-L)Ry, () (define L)
ie. Uu,=28246 W/ {m’C) (overall heat transfer coefficient based on outside area)

Example 4.34, A 160 mm dia pipe carrying saturated steam is covered by a layer of lagging of thickness 40 mm (k = 0.8
W/(mC)). Later, an extra layer of lagging of 10 mm thickness (k = 0.12 W/(mQ)) is added. If the surrounding tempera-
ture remains constant and heat transfer coefficient for both lagging materials is 10 W/ {m’K), determine the percentage
change in rate of heat loss due to the extra lagging layer.
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Lagging 2, k, = 1.2 W,
Lagging, k, = 0.8 W/(mK) agging 2, k, = 1.2 W/(mK)

Lagging 1, &, = 0.8 W/(mK)

Pipe
5 Pipe
h, = 10 Wim'C) )
C <h8=10 WHm'C)
n=008m . S =008m.
Rp=012m " =012m
T =043m
AT l¢ AT N
p—— 0 0> AN SAN AN S>Q
Ry R, Ry Ry Ra
FIGURE Example 4.14{a) Pipe with one FIGURE Exomple 4.14(b) Pipe with two

layer of lagging loyer of lagging

Solution. See Fig. Example. 4.14.
Data:

ry =008 m r,=012m ry =013 m k= 0.8 W/(m(C) k, == 012 W/(mC)

h=10W/(m’C) L:=1m

Since this is a case of steady state, one-dimensional conduction with no internal heat generation, thermal resistance
concept is applicable.

In case (i): Thermal resistance is the sum of conduction resistance in lagging layer number 1 and convective resistance
over its surface. Conduction resistance of the pipe material and the convective resistance between steam and inner
surface of pipe are neglected, since no data is given. See Fig. Example. 4.14a.

In case (ii): Thermal resistance is the sum of conduction resistances in lagging layers number 1 and number 2 and the
convective resistance over the surface of lagging layer number 2.

Obviously, Ry, for case (i) is more than that for case (i); accordingly, heat transfer rate for the second case, Q, is
less than that for first case, Q;.
From analogy with Ohm's law, we write:
Q1 = AT/Ryy and Q = AT/R,,, where AT is the overall temperature difference, which is the same for both cases.
Therefore, (Q2/Q1} = (Rign/Ripea)-
And, % change in heat flow rate = ((, ~ Q,) x 100/Q, = [1 - (Q,/Q,)] x 100
Thermal resistances:

ln(iJ
R, := _A\hJ C/W (define thermal resistance of lagging layer 1)

T 2rk-L
ie. R, = 0.081 C/W (thermal resistance of lagging layer 1)
(2}
Ry = A2 C/W (define thermal resistance of lagging layer 2)
2-7k,-L _
ie. R,=0106 C/W (thermal resistance of lagging layer 2)
R, ! C/W (define convective resistance over surface of lagging)

T h@rn D

FUNDAMENTALS OF HEAT AND MASS TRANSFER



ie. R, = 0133 C/W (convective resistance over surface of lagging layer 1)
-

2 (2oL

ie. R,=012C/W (convective resistance over surface of lagging layer 2)

C/W (define convective resistance over surface of lagging)

Total resistances:
Case (i): with lagging layer 1 only:

Rt = Ry + Ry ie. Ry = 0213 C/W (total resistance for case (i})
Case (ii): with lagging layer 1 and 2:
Ry = R+ Ry + Ry ie Ry = 0309 C/W (total resistance for case (ii))

Percentage change in heat transfer rate:
First, find out (Q,/Q,) from: (Q,/ 0} = (Rign/ Riei2)

o Retr
by Q= R {define (,/Q1)
tot2
Therefore, Q. by Q, = 6.6897 (value of Q2/0Q4)
And,
Per cent change := (1 - Q, by ,)-100 {define % change)
ie Per cent change = 31.029 i.e. change in heat transfer rate is 31.029%.

Example 4.15. A 3.3 cm OD steel pipe, outside surface of which is at 500 K, is surrounded by still air at 300 K. The heat
transfer coefficient by natural convection is 10 W/(mK). Tt is proposed to reduce the heat loss to half by applying
magnesia insulation (k = 0.07 W/(mK) on the outside surface of the pipe. Determine the thickness of the insulation.
Assume pipe surface temperature and convective heat transfer coefficients remain the same.
Selution. Thermal resistance concept is applicable since it is a case of steady state, one-dimensional conduction, with no
internal heat generation.

There are two cases:
Case (i): Without insulation, i.e. bare pipe—now, the heat transfer occurs only by natural convection on the pipe surface
and the heat transfer rate, Q, is given by Newton’s Law of Cooling, namely, Q, = b, (27r,. L).AT, or, Q, = AT/R,, where
R,; is the convective resistance and AT = {500 - 300} deg.
Case (ii): With insulation: Now, the heat transfer rate, , is given to be half of (. Thermal resistances involved are: the
conductive resistance of the cylindrical insulation layer (= R,) and the convective resistance over the insulation surface
(= RaZ)'
i.e. Q; = AT/(R + Ry). Write the expression for (3, and solve the resulting transcendental equation by trial and error to
get the outer radius of insulation.

Situations of case (i) and (ii) are depicted in Fig. Example. 4.15(a) and (b).
Data:

r = 00165 m  h, =10 W/(m?K) kg = 007 W/(mC} T, :=500K T,:=300K L:=1m

Let . be the outer radius of insulation ‘
Case (i): bare pipe:

1

Ry = ——————— /W (conuvective thermal resistance on bare pipe)
hy2-7-r L)
ie. R, = 0965 C/W (convective thermal resistance on bare pipe)
Therefore,
T-T, ,
Q=—>W (define heat transfer rate, (3))
a1
ie. Q,=207.345 W {feat transfer rate for bare pipe}
Case (ii); pipe with insulation:
Now, Q= % ie Q,=103.673 W (heat transfer rate, with insulation)
We have: Q, = AT/ZR,
Le. Q2= AT/(Ry + Ry

ONE-DIMENSIONAL STEADY STATE HEAT CONDUCTION WITHOUT HEAT GENERATION
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Pipe Insulation, k. = 0.07 W/(mK}

Pipe Q= Qi

Q 2, z
h, = 10 W/{(m"C) h, = 10 Wi(m"°C)

“ =00165m”

A

A
Y

AT AT
Q—>—e NN\ 0> Q Q, — > A\ AN—AN

Y Q
R, R Ry
FIGURE Example 4.15{a} Pipe without insulation FIGURE Example 4.15{b) Pipe with insulation
So, we get:
AT T, -T. 500 ~ 300
Q= = 12 = ...(a)
ZR In| B bn| —m.
n . 1 0.0165 . 1
_ 2nk, L h(27r, L) 2xax007x1  10x(Zxaxr, x1)

Simplifying, we get:

0.015915
Tins
This equation has to be solved to get r,,; and, trial and error solution is required since it is a transcendental
equation. Solve it by hand, as an exercise.

However, it is easily solved in Mathcad, using soive block. Start with a trial value of 7, and write the consiraint
(i.e. Eq. (a)) immediately below ‘Given’; then the command Find(r;,, ) gives the value of r;: Note that you need not even

simplify Eq. (a).

2.27366 x ]n(;—J + = 1.92914

(.0165

Tis == 0.05 m (trial value of ri,,)
Given
T-T,
Q2 - 1 2
n 1
Ny
2wk L B 2w, L
Find (r,,.} = 0.030083
ie. Fins = 0.0307 m (outer radius of insulation)
Therefore, thickness of insulation:
Fig 1= Tip — F1 M (define thickness of insulation)
ie. fins = 0.014 m (thickness of insulation)
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4,10 Spherical Systems
Spherical system is one of the most commonly used geometries in industry. It finds its applications as storage
tanks, reactors, etc. in petrochemical, refineries and cryogenic industries. Sphere has minimum surface area for a
given volume and malerial requirement to manufacture a sphere is minimum compared to other geometries.
Here, let us analyse the spherical shell for heat transfer in one-dimensional conduction, i.e. it is assumed that
temperature gradients are significant only in the radial direction; so, heat flow occurs only in the radial direction.
Now, here also, as in the case of a cylindrical system, the area normal to the direction of heat flow is not a
constant, but varies with r.
Consider a spherical shell, inside radius r; and outside radius r,. Inner and outer surfaces are at uniform
temperatures of T; and T, respectively. See Fig. 4.10.

Q / Q
( )

\\ _/

\,/ Temperature profile,

T hyperbolic

s

— T,
no :
T, T, —
Q—>»——o—"NN—e—>Q 2
Repn = {f5— ry(anhrot)
FIGURE 4.10(a) Spherical system and the FIGURE 4.10(b) Vorigtion of temperature
equivalent thermal circuit along the rodius

Assumptions:
(i) Steady state conduction
{ii} One-dimensional conduction, in the r direction only
(iii) Homogeneous, isotropic material with constant k
(iv) No internal heat generation.

Now, since we are considering a spherical system, it is logical that we adopt spherical coordinates. General
differential equation for conduction in spherical coordinates is given by Eq. 3.21. For the above mentioned
assumptions, Eq. 3.21 reduces to:

421 2dT
— +——— =0
dr?  rdr

Note that now, it is not partial derivative, since there is only one variable, r.

We have to solve this differential equation to get the temperature distribution along r and then apply
Fourier's law to calculate the heat flux at any position.

Multiplying Eq. 4.49 by 1%,

. (4.49)

2
rzE—T— +2r Ei—z =0
dar* dr
ie. i [r2 QJ =0
dr dr
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Integrating,
24T _

r C
dr !
ar C
or, .=
dr e

Integrating again,
T{r)y =~ G +C,
r

where, C; and C, are constants of integration,

Eq. 451 gives the temperature distribution in the spherical shell as a function of radius.

C; and C, are found out by applying the two B.C.'s:
(i) atr=r, T=T,
(ii) atr=r,T=T,
B.C. (i) gives: T =-Ci/r+ G
B.C. (ii) gives: T,=-Ci/r,+ G
Subtracting Eq. b from Eq. a:
T~ T, = Cpl(l/r,) - (1/7)]

T -T
ie. Cy= H
non
and, from Eq. a:
_ 1 T; - To
T
fo T

Substituting C; and C, in Eq. 4.51, we get

T-T
T =T, - 1‘——1" x(l—lJ

L %
Eq. 4.52 is the desired equation for temperature distribution along the radius,
Eq. 4.52 is written in non-dimensional form as follows:
1.1
TO-T _r 1 ng[r_'?]

h—F%

T,-T, 1.1

o W

..(4.50)

.{4.51)

...(a)
...(b)

{4.52)

{4.53)

Temperature distribution for the spherical system is shown in Fig. 4.10 (b}. Note that the temperature

distribution is a hyperbola.
Next, to find the heat transfer rate, :

We apply the Fourier's law. Since it is steady state conduction, with no heat generation, Q is the same through

each layer.
Considering the outer surface, i.e. atr =,
P — 1
Q:—kA,EZ =—kx4:rrfxr1;’ Ti’x—z
dri, _, 1o
L on
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_4nk(T,-T) _ 4zknn(T,-T)
Akt 20 (454

T

ie. Q

Eq. 4.54 gives the desired expression for rate of heat transfer through the spherical system.
Now, writing Eq. 4.54 in a form analogous to Ohm’s law:

_AT _ T-T,
Rsph o1
drkr,r;

Immediately, we observe that thermal resistance for conduction for a spherical shell i{s given by:

o 1 [l__l.} .(4.55)

0" Axker dmk|n o1,
Alternatively
Since it is steady state, one-dimensional conduction, with no heat generation, heat flow rate, (J is constant at
every cross-section; so, we can directly integrate Fourier's equation between the two known temperatures (and
the corresponding, known radii), keeping Q out of the integral sign; this wilt give us Q. Then, at any r, the
temperature Tir} is calculated by integrating between r = r; and r = 7 (with
T =T;and T = T{r}), and equating the ( obtained now to the expression for s
Q obtained earlier.

Refer to Fig. 4.11.

At any radius r, consider an elemental spherical shell of thickness dr;
let the temperature differential across this thin layer be dT. Then, in steady
state, rate of heat transfer through this layer (J, can be written from
Fourier’s law, to be equal to: '

T
Q =-kA, d—, where A, = 477°
dr
. dr
ie. Q= =~ 4nkdT .-.{4.56)
r
Integrating Eq. 4.56 from r; to r, (with temperature from T; to T),
1, g T i
r
QL—: - —47rkJ-dT .
T T; il
17 FIGURE 4.11 Spherical system
ie. Q[f] =47k(T; - T,).

n

e oot cama-m
_ Amk(n o 0T -T,)

o= T

or, Q2 ..same as Eq. 4.54

To get the temperature profile within the spherical shell:
At any radius 7, let the temperature be T(r).
Integrating Eq. 4.56 from 7, to r, i.e. replace r, by r and T, by T{r} in Eq. 4.54,
o - Arknr(T - 1)
r-n

-..(4.57)

Now, apply the principle that () is the same through each layer, i.e. equate Egs. 4.54 and 4.57:
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drk(n o )T - T,) _ 4akrr (1 - T(r))

L=t L /]
Tir) =T _r

ie. M -5 X Ih (same as Eg. 4.53)
- To - Tl r Ty —F

Concept of “geometric mean area” for a spherical system:

As in the case of the cylindrical system, it is convenient to think of an equivalent slab for the spherical systen, i.e.
we would like to express the thermal resistance of the sphere in the form of the thermal resistance for a slab (i.e.
R = L/(kA})). If we define L as the thickness of the spherical shell, i.e. Ly = (r, — 13}, we can write from Eq. 4.55:

R, =Tl =1
P 47‘[’(1’07',' k'J(4ﬂ.r02)(4”r'_2)
th—H Ls h
ie. Ry = ——o = 2P0 . (4.58)
Tk JAA kA,

Le. thermal resistance of spherical shell, R, is expressed in a form analogous to that of a plane slab. Here, the

equivalent area, A, = \JA, A, , is known as “geometric mean area’. It represents the area of an equivalent slab of
q ¢ 044 i P eq

the same material, with a thickness equal to that of the spherical shell and transfers the same amount of heat per
unit time under the same temperature potential as for the spherical shell. Note that that A, and A, are the outer
and inner surface areas, respectively, of the spherical shell.

Note: It is very common that containers have hemispherical ends. Then, remember that thermal resistance of a
hemispherical spherical shell is half that of a spherical shell as given by Eq. 4.55.

Example 4,16, Consider an aluminium hollow sphere of inside radius r; = 2 cm, outside radius r, = 6 em and k = 200 W/
(mC). The inside surface is kept at an uniform temperature of T; = 100°C and outside surface dissipates heat by
convection with k = 80 W/(m?C} into ambient air at a temperature of T, = 20°C. Determine:
(i) outside surface temperature of the sphere in steady state
(ii) rate of heat transfer
(ili) temperature within the aluminium sphere at a radius r = 3 cm
(iv} sketch the temperature distribution along the radius.

Solutien. See Fig. Example. 4.16.

Hollow sphere Data:
k = 200 W/(mC) r=002m  r,:=006m = 200 W/(mC)
Qs Tp=100°C  T,:=20°C  h = 80 W/(m%C)
]
2 f i f sphericat
h, = 80 W/(m'C) She;LLQt T, be the temperature of outside surface of spherica
T,=20°C Since it is a case of steady state, one-dimensional heat
T,=100°C - transfer with no internal heat generation, thermal resistance
/ concept is applicable.

Heat transfer through the sphere is by conduction and

then, from the outer surface of the sphere to ambient, it is by
< > convection. 5o, calculate these resistances, i.e. R is given by
;=002m Eg. 4.55 and convective resistance, R, = 1/(h.A,), where A =
< r = 006m » (4 7r}) is the outer surface area of the spherical shell. Now,
o= apply the equivalent Ohm's law, ie. Q = AT/R,, to get the
_ heat transfer rate, Q. See Fig. Example 4.16 for equivalent
AT=T,-T, > thermal circuit.
Ti T, Ta Thermal resistances:
Q—+——"\NN\—e—N\ N> Q .
R, R R, = —2 ' C/W
sph @ sp}l 4ﬁkrﬂr' /
FIGURE Exomple 4.16 Hollow sphere (define the thermal resistance of spherical shell)

with convection
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e Rep = 0013 C/W {thermal resistance of spherical shell)

R, = m C/W {define convective thermal resistance on ‘thz outer
surface of spherical sheil)
ie. R, =027 C/W (convective thermal resistance on the outer surface
of spherical shell)
Total thermal resistances:
Therefore, Rige == Ropn + R, C/W {define total thermal resistance)
ie. Ry = 029 C/W (total thermal resistance)
Heat thermal rate, (:
Apply: Q=AT/R,,
ie. Q= 'ET:,,E' w {define ()
ie. Q=276.268 W (rate of heat transfer)

Temperature of outer surface of spherical shell:

Apply the equivalent Ohm’s law only to the convective layer, remembering that ( is same through each layer in steady
state, i.e. Q = (T, — T,}/R,. Therefore,

T,=T,+ Q.R,
We have: T,:=T,+ Q.R,, (define T,)
ie. T,=96336 C (temperature of outer surface of shell)

Verify with reference to the spherical shell:
ie. (T; - T,)/Ryp, must be equal to Q:
We get: L-L 276268 W (verified)
Rn
Temperature at a radius of r = 3 cm:
Temperature distribution along the radius is given by Eq. 4.53, namely,

1.1
m-% _r n _# [r-n

A =2 x ..(4.58
L-T 1.1 - =t (@58)

L %

Therefore, we get:
T(): =T, +(T,- T,)[E{QJ] °C (define temperature as a function of radius)
T At -1

Now, substitute r = 0.03 in T{r) to get temperature at that radius:
Le. T(0.03) = 98.168°C (temperature at a radius of 0.03 m)
Temperature profile along the radius:
This is drawn very easily in Mathcad. First, define a range variable r varying from inner radius to cuter radius, i.e. from
0.02 m to 0.06 m, say at an interval of 0.001 m. Then, choose the x — y graph from the graph palette. Fill in the place
holders on the x-axis and y-axis with r and T(r), respectively. Click anywhere outside the graph region and ilmmediately
the graph appears: See Fig. Ex. 4.16(b)
r=0.02, 0021, ..., 0.06 ...define range variable r; starting value of r = 0.02,
next value = 0.021 and last value of r = 0.06 m

Note: verify from the graph that temperature at r = 3 cm is, indeed, 98.168 deg.C.

4.11 Composite Spheres

Assumptions:
(i} Steady state heat flow
(ii} One-dimensional conduction in the r direction only
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Temperature profile in spherical shell

100 Temperature in deg.C and
radius in metres
99 \
T
4] 98 \\
AN
97 \
a6

001 002 003 004 005 006
r

FIGURE Ex. 4.16(b)

T, T,

Q Q
;
7, b
n:\
h:\ T,
Tﬂ . ]

N i
2 r >
o - n > Temperature profile
T3 g Ty TN /
T 17
Te Ty T, i
. a T |
Ra R R, Ry T, —+ !
FIGURE 4.12(a) Composite spheres FIGURE 4.12(b) Composite spheres
and equivalent thermal circuit and temperature profile

(ili) No internal heat generation
(iv) Perfect thermal contact between layers.

Consider a system of composite cylinders as shown in Fig. 4.12.

A hollow sphere of inner radius r,, outer radius r, and thermal conductmty k, is covered with another layer
(say, insulation} of radius 7, and thermal conductivity k,. There is perfect thermal contact at the interface between
the two layers, i.e. there is no temperature drop at the interface. Let T; be the interface temperature. Further, let a
hot fluid at a temperature T, transfer heat to the inner sphere with a heat transfer coefficient . On the outside, let
the heat be lost from the surface at a temperature of T; to a cold fluid at a temperature Tb flowing with a heat
transfer coefficient of h,.

Under the given stipulations, it is clear that heat flow rate, Q through each layer is the same. Let us write
separately the heat flow equations for the 4 layers:
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Convection from the hot fluid to inner wall at T3

Q'=h, @ )T, - T)), (from Newton's Law of Cooling)
- Q
ie. T,-T)=—= - =QR,
e ( v hoard) Q (a)

Conduction through first spherical layer:
g - A#hnn(h - 1)
n-n
, Qr ~#) '
ie. (T, -Ty)==—=—""=(QR
L e QRy (b)

Conduction through second spherical layer:
_Arkinn (T - 15)

Q
Ia—n
: Qi -1)
ie. T, - Ty = ——= =QR
| 2 3) 471'](2 ks Q ? (©

Convection from the outer wall at T, to cold fluid at T,:

Q = h@dar)Ty-T,), {from Newton’s Law of Cooling}
. Q
ie. (Ty~Ty) = ———-=QR ()

VY m@rd) T

Adding Egs. a, b, c and d:
(T,-Ty) =Q(R, + Ry + Ry + R))
I,-T, L=

ie. = = .{4.59
Q RR+R1+R2+R1, ZR ( )
ie Q= AT, = Tp) - (4.60)
- 1 1 B-H KBR-B T
rt, 2 +
bttt hyry Kinn konn

If there are N concentric spheres, we can write:

- T
Q= 47(T, ~ T;) {461)

N

1 + 1 +Z N1 =N

2 2

hati Ryriver SHUANININ 41
Basically, remember that in the composite spherical system just studied, the various resistances such as the
two convective resistances and the two conductive resistances are all in series. Then, by analogy with the rules of
electrical circuit, total thermal resistance is the sum of the individual resistances. Once these individual
resistances are identified and calculated, it is a simple matter to calculate the heat flow rate by analogy with
Ohm'’s law, i.e. Q = AT/R,,,,- Temperatures at the interfaces are calculated by using the fact that ( is the same

through each layer and by applying the analogy of Ohm’s law for each layer by turn.

4.12 Overall Heat Transfer Coefficient for the Spherical System
As in the case of cylindrical systems, we define an overall heat transfer coefficient for the spherical systems also.
Again, in this case too, the area normal to the direction of heat flow varies with the radius and it is necessary to
specify as to on which area the overall heat transfer coefficient is based.
Accordingly, we write:
Q = uiAi' (Tn - Tb) = UOAO (Ta - Tb)
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where, U; = overall heat transfer coefficient based on inside area
' U, = overall heat transfer coefficient based on outside area
A; = heat transfer area on inside
A, = heat transfer area on outside
Therefore, we get:

Q= i? = UA; (T, ~ Ty} = A, (T, - Ty)
ie UA; = UA, =
1 ) [ ZR
Therefore,
1
U = and
: A,-ZR
1
U, = —e—
A 3R
We can also write:
1
Ai R 4.?1'?’12X 1 2+ 1 z+ R n n—-n"
dzh,n  4dxhyry  4xkian  4dxknn
. 1
ie. U= 2 ...{(4.62 a)
2
1,1 (n)] jale-n) qis-n)
hﬂ hb f3 k-l Tz k2 r3 T2
And,
U < 1 1
P~ B
A"ZR 4xrl x 1 5+ 1 5+ 2-h , B7R
4]!".!“!"1 4ﬂ'hbr3 47:k1?‘17'2 47[’(21‘31‘2
. ) 1
ie. U, = ; > " {462 1)
1o (n],L,Ble-n) nin-n)
ha I'l hb k] T] 7'2 k2 o]

Note: Eqs. 4.62 a and 4.62 b give U, and U, in terms of the inside and outside radii. You need not memorise
them. To calculate LI; or U, while solving numerical problems, just remember Eq. 4.46, namely

1
2R
Example 4.17. A spherical vessel containing hot fluid at 160°C is of 0.4 m OD and is made of titanium of 25 mm
thickness. The thermal conductivity is 20 W/(mK). The vessel is insulated with two layers of 5 em thick insulations of
thermal conductivities 0.06 and 0.12 W/ (mK). There is a contact resistance of 6 x 107* and 5 x 10 (m*C)/W between the
metal and first insulation and between the insulating layers. The outside is exposed to surrounding at 30°C with a
convection coefficient of 15 W/(m2K). Determine the rate of heat loss, the interface tempetatures and the overall heat
transfer coefficients based on inside surface area as well as outside surface area (i.e. calculate LI; and L}

Solution. See Fig. Ex. 4.17(a) & (b).

UA = UA, = (4.46)

FUNDAMENTALS OF HEAT AND MASS TRANSFER



FIGURE Example 4.17(a) Equivalent thermal circuit including contact resistances

Data:
rn=0175m rp:=020m r:=025m r,:=030m Ky =20 W/{mK}
ky = 0.06 W/(mK) = k=012 W/(mK) T, := 160°C T, :=30°C
h, = 15W/(mMK)  Regq = 6 X 104 MPC/W  Repp = 5% 107 m*C/W
Thermal resistances:
Thermal resistance network is shown in Fig. Example 4.17(a).

Conductive resistances:

nL -t
R, := 4—;){:‘&—71 (define thermal resistance of spherical titanium shell)
ie. R, =2842 % 107 C/W (thermal resistance of spherical titanium shell)
-1
R, = —Th (define thermal resistance of first insulation shell)
41k 1
ie R, = 1326 C/W (thermal resistance of first insulation shell)
f,—T.
Ryi= —22 define thermal resistanc cond insulation shell
3 ko (define istance of se insulation shell)
ie. R, = 0442 C/W (thermal resistance of second insulation shell)
Convective resistances:
R, := h—(4—1-——2—) C/W (define the comvective resistance between outer insulation surface and the ambient air)
" .”u r¢
te. R, =0.059 C/W (convective resistance between outer insulation surface and the ambient air)

Contact resistances:

Between the titanium surface and first insulation, contact resistance is given as R gy = 6 % 107* (m*C)/W; note that this

resistance is per m? of surface. Actual surface area is (4 7+2). Therefore, contact resistance R, = 6 x W0 @amd, C/W
Similarly, at the interface between the two insulation layers, contact resistance is given as 5 X 107 (m*C)/W and the

surface area at the interface is (4 #r.) and therefore, contact resistance R 3 = 5 x 1074/ (4 xrd), /W

R, = ﬁ:;)- / (define contact resistance between titanium and first layer of insulation)

ie. R.,=1194x% 10 C/W (comtact resistance between titanium and first of insulation)
R, = (4&22—) C/wW (define contact resistance between the two layers of insulation)
- x. r3
ie. R, = 6366 x 1071 C/W {contact resistance between the two layers of insulation)
Therefore,
R = Ry + Ry + Ry + Ry # Rp + R, CO/W (total thermal resistance)

fe.  Rym= 1832 C/W
Heat transfer rate, (:

T, T,
Q=12 W (heat transfer rate)
Riput
ie Q=709%W theat transfer rate)

Interface temperatures:

To calculate the interface temperatures, let us calculate the temperature drop through each layer, starting from the irner
titanium layer, i.e. AT = Q.R, from Ohm’s law. Alsc, remember that ( is the same through each layer.
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Temperature drops at the interfaces:

Let ATy, be the temperature drop in the titanium metal layer and AT,,, the temperature drop at the interface 1 between
titanium and first insulation layer, and AT,, the temperature drop through the first insulation layer, and AT,,, the
temperarture drop at the interface 2 between the two insulation layers, and AT, the temperature drop through the
second insulation layer, and AT, the temperature drop in the outer convection layer.

From analogy with Ohm's law, we have:

ATy = R,-Q°C (temperature drop through titenium metal shell}

ie. ATy, = 0.202°C ({temperature drop through titanium metal shell)
Therefore, T,=T -ATy
ie. T, = 159.798°C (temperature of outer surface of titanium shell)
And,
AT, =R -Q°C {temperature drop at interface between metal
amd first insulation due to contact resistance)
ie. AT, = 0.085°C (temperature drop at interface between metal

and first insulation layer)
Therefore, T, :=T,- AT,

(temperature of inner surface of first insulation shell)

ie. T, = 159.714°C
And,
AT, = R, (Q°C (temperature drop through the first insulation layer)
ie. AT, = 94.114°C (temperature drop through the first insulation layer)
Therefore, Ty:=T,+ AT,
ie. T, = 65.599°C {temperature of outer surface of first insulation shell)
And,
AT, == R,-Q°C (temperature drop at interface between the two
insulation layers due fo contact resistance)
ie. AT, = 0.045°C (temperature drop at interface between the hwo

insulation layers)
Therefore, T'3=Ty- AT,

ie. T’; = 65.554°C (temperature of inner surface of second
insulation shell)
And, ’
AT, = RyQ°C (temperature drop through the second insulation layers)
ie. AT, = 31.371°C (temperature drop through the second insulation layer)
Therefore, Ty:=T;- AT, '
i.e T, = 34.183°C (temperature of outer surface of second insulation shell)

Check: Considering the outer convective layer, and applying Ohm’'s law, we should get = (T, — T,)/R,. This should
equal 70.96 W, obtained earlier. Verify this:

T,-T,

Q= ie. Q =7096 W (werified.)

Temperature profile is shown in Fig. Example 4.17(b}:
Overall heat transfer coefficients, U; and U :
Remember that: U;A; = L A, = 1/ER
where, A; and A, are the inner and outer surface areas of spherical shells, respectively.

Now, Aj=4dmr? e A =038 m’ {inner surface area of spherical shell)
and, Ag=dari ie A, = 1131 m? (outer surface area of spherical shell)
Therefore, U = 1 W/(m?C) (overall heat transfer coefficient based on inner
Rigear - A, surface areq)

ie. U; = 1.418 W/{m’Q) (overall heat transfer coefficient based on inner surface area)
And, u, = X L W/(m?C) (overall heat transfer cogfficient based on outer surface area)

todal " F e
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T4
Q
2
h; =15 Wim °C)
T1 =l 160“0 < Ta = 30::C
, = 0.175
R=020m"
r;=025m
1,=0.30m " Titanium shell
T, = 160°C

T, = 150.798°C
T, = 159.714°C

/‘ Insulation-1
/—/:Insuialion-z
: Convective layer

T, = 65.599°C -
T, = 65.554°C

7, = 34.183°C ————H——h

T,=30°C

FIGURE Example 4.17(b) Temperature profile in the layers

ie. U, = 0.483 W/(m’C) (overall heat transfer coefficient based on outer surface aren)
Note: We can also write: U, = U; x {4;/4,).

4.13 Critical Thickness of Insulation

Insulation is added to a surface to reduce the heat loss from the surface to the ambient, if the surface is hot, or to
reduce the heat loss into the surface from the ambient, if the surface is cold. Either way, the aim is to reduce the
heat loss. Generally, addition of insulation does reduce the heat loss; however, there are some interesting cases
where this may not be so, and the addition of insulation, in fact, increases the heat 10ss!
To get an insight into such a possibility, let us consider following two cases:

Case (i): nsulating & ubioel formacs.  Let the fumnace wall be at a high temperature of T,. Insulation is provided
over this wall to reduce the heat loss to the ambient, which is at a temperature of T, Furnace wall loses heat to
the surroundings by conduction through the insulation layer and by convection from the outer surface of
insulation. So, the resistance to heat transfer is made up of two components, namely, conductive resistance of the
insulation slab (= L/ (kA)) and convective resistance between the wall surface and the surroundings (= 1/(h.A)),
where L is the thickness of the insulation slab, k its thermal conductivity and  is the heat transfer coefficient for
convection. A is the area normal to the direction of heat flow, which is a constant for a slab configuration. Obvi-
ously, as the insulation thickness is increased, its conductive resistance increases and the convective resistance
remains constant and therefore, the total resistance increases; as a result, the heat loss goes on decreasing as the
insulation thickness goes on increasing.

Case (ii): msulating u pipe corrying @ hot fiwil  Let the pipe wall be at a high temperature of T,. Insulation is
provided over this wall to reduce the heat loss to the ambient, which is at a temperature of T,. Pipe wall loses
heat to the surroundings by conduction through the insulation layer and by convection from the outer surface of
insulation. So, the resistance to heat transfer is made up of two components, namely, conductive resistance
through the cylindrical insulation layer [= In(ry/7,)/ (2mkL)] and convective resistance between the wall surface
and the surroundings [= 1/(h.A,)), where ry is the inner radius of insulation layer {or, cuter radius of pipe), r, is
the outer radius of insulation layer, k its thermal conductivity, L is length of pipe, and h is the heat transfer
coefficient for convection. A, is the area of outer surface of insulation. Obviously, as the insulation thickness is
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increased, i.e. as insulation radius r, is increased, conductive resistance of insulation increases; however,
convective resistance, given by [1/(h.A,)] goes on decreasing since 4, the outside surface area goes on increasing
with increasing radius. Therefore, the total resistance may increase or decrease, depending on the relative rates of
change of these two resistances. And, there are situations where the total resistance does decrease as the
insulation thickness increases i.e. the heat transfer rate (Q increases as the thickness is increased! Let us analyse
when this happens.

For the above case, the equivalent thermal resistance circuit is shown below in Fig. 4.13 (a).

Consider any radius r of the insulation. Let us investigate the variation of the two resistances and therefore,
of Q, as the insulation radius r varies:

The total temperature potential for heat flow is (T, — T,). The resistances involved are:

(i) R, = conductive resistance of the cylindrical insulation layer

ie.
T Ta R 1 (7
@ Q T 2xkL | n
Rins Roonv and’
FIGURE 4.13(a) Equivalent thermal cireuit (i) _RmnY = C".“"EC“"Z,reSiSta“ce on the surface of
for a cylinder with insulation msulation, 1e. at radius .
ie. Reogmy = 1 !
R 4 Y h A, h(2rrL)
R As stated earlier, conduction resistance, R, increases
as r increases, and, convection resistance, R_,,, decreases as
7 increases. Variation of Ry, and R, with r are shown in
Fig. 4.13(b); this figure also shows the variation of the total
/ Rins resistance, R, given by:

Rigy = Rips + Repne
Note that R,,, passes through a minimum. The insula-

tion radius at which the resistance to heat flow is minimum
\ is called ‘critical radius’, r; i.e. the heat flow is a maximum
Reoonv at the critical radius. )
. . ;r‘ Correspondingly, the variation of heat flow per unit
1 c

length, (Q/L), with r is shown in Fig. 4.13(c):
FIGURE 4.13(b) Varigtion of resistances In Fig. 4.13 (c), r, is the radius of the bare pipe and the
with insulotion radius for o eylinder value of /L at this point is the heat transfer rate per unit
length for the bare pipe. Insulation is added over the pipe
QL A Q and till the insulation radius r reaches the value of r, Q/L
max goes on increasing and reaches a maximum at r = r,. As the
insulation radius is increased further, Q/L decreases, but is
still at value higher than that for the bare pipe. As can be
y seen from the figure, at point y, value of Q/L is the same as
at point ¥, i.e. the value of Q/L for the bare pipe. Beyond the
value of r corresponding to point y, value of (/L decreases
with 7 and the insulation becomes really effective. It should
be noted that when the radius of the pipe r, is less than that
of critical radius r,, the insulation is not really effective in
the radius range of ry to ., since adding the insulation

actually increases the heat flow rate.
Mathematically, to find out at what insulation radius r
*  the R, becomes a minimum for the cylindrical system, let
f fe ”  us differentiate the expression for R,, and equate to zero;
. then, to confirm that at that r,, the R,_, indeed goes through
FKTURE 4'.15(‘:). Heof. transfer per unit a minimum, verify that the sécond dtgtrivative ogf R w.r.f ¥
length vs. insulation radius for a cylinder is positive: tot
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Now,
1 r 1
R.=R._+R nv:—ln —_ ]+ ——— .{(4.62
ot e T kL [rl] b (2xrL) @62

In the above expression for R, r the external radius of insulation, is the only variable. So, to find out at what
value of r the R, is minimum, differentiate R, w.r.t r and equate to zero:

d —
_(th)thr_lxl _.}mwwx(_ﬂ =0
dr 2rkL r o h(2mL)  r?
. 1 1 1 1
ie. X = ———— X —
2zkL " r  Rk(27L)  #2
. k
ie. r=r.=— (4.63)
hy

Eq. 4.63 gives the expression for critical radius, r, for the cylindrical system.
To confirm that at r = r,, R, indeed is minimum, let us find out the value of (@R, /dr*) atr = ..

-1 1 1 2
= X3t TRAR
rer 2xkl v R (2mL) 1 rer,
Substituting r = r_ = k/h, in the above expression:

2zkl kK2 haal K3 2xk3L

. d*
1.€. F(Rtot)

d?
— Ry = (4,64

It is clear from Eq. 4.64 that (4R .,/ driyatr=r.is+veie. qu 4 Qax
atr =r,, the R, is a minimum. There are two cases of practical
interest, as shown in Fig. 4.14: / \
Case (i): r; < r.: This situation is shown in Fig. 4.14 (a}. /

Here, r;, the radius of the pipe happens to be less than the
critical radius. Therefore, addition of insulation increases the
heat flow rate (Q/L) till the insulation radius reaches a value
of r,, the critical radius (i.e. range a — b in the figure) and
beyond this point, further addition of insulation decreases the
value of (Q/L). In practice, such a case is likely to occur if in-
sulation material of poor quality is applied to pipes or wires of
small radius. This situation is profitably utilised in insulating
current carrying wires, where the electrical insulation pro- L
vided is a material of poor thermal conductivity; here, the f le
radius of the current carrying wire is small and is generally
less than the value of critical radius. Thus, addition of FIGURE 4.14(a)
electrical insulation actually helps to dissipate more heat from
the wire and results in cooling it.

Case (ii): r, > r: This situation is shown in Fig. 4.14(b). .

Here, r,, the radius of the pipe happens to be more than the critical radius. Therefore, addition of insulation
decreases the heat flow rate (Q/L) as shown in range (a — b} in the figure. In practice, such a case is applicable in
insulation of steam pipes and refrigerant lines. However, it may not be necessary to check for critical radius
while insulating steam lines due to the following reason: generally, the value of k for insulations used in those
applications is of the order of 0.05 W/(mC), and h, for natural convection is of the order of 5 W/(m’C) and thus
the critical radius is of the order of 7, = (0.05/5) = 0.01 m, i.e. 1 cm. Often, the pipe radius is more than this value,
and addition of insulation will decrease the rate of heat transfer as desired. :

Critical thickness of inswlation for o sphere. Case of a sphere is similar to that of cylinder since here also, as the
radius of insulation increases, the surface area increases. So, as the insulation radius is increased, the conduction
resistance of insulation increases and the convection resistance decreases.

>
-
r

Heat transfer per unit
length vs. insulation radius for a cylinder
when ry <.

ONE-DIMENSIONAL STEADY STATE HEAT CONDUCTION WITHOUT HEAT QENERATION




QIL A L Qrnax

-
re n r

FIGURE 4.14(b) Heat transfer per unit
length vs. insulation radius for a cylinder
when ry > r.

Sphere

Insulation

FIGURE 4.15 Critical radius for a sphere

King = 0.25 WH{mK)

25 mm OD
refrigerant line

f» h, = 10 WHm’K)

FIGURE Example 4.18 Critical radius for
a ¢ylinder

Therefore, insulation is not effective.

Max value of k to reduce heat transfer:

Let r; be the radius of the sphere on which insulation is
applied, and let r be the outer radius of insulation. See Fig.
4,15, We would like to investigate the change of R, as
insulation radius r is varied:

We have, for the spherical system:

_r—n 1
Rig = Rips + Reony Py, + W (4}”2) ..{4.65)

Differentiating R, w.r.t. r and equating to zero:
d d] 1 (1 1 1
SR = S =0
dr dr|axk\n r] h(4dxr)

1 1 2
Le. 04— ]- 2 =0
' 4Jrk( er hame

. 1 2
l-e- "“ﬁﬁ’T - ‘—‘_“‘-‘_5 = 0
dgkr hdnmr
ie. r=r.= i—k ..{4.66)

a

Eq. 4.66 gives the expression for critical radius, r, for the
spherical system. {To confirm that at r = r, R, indeed is mini-
mum, check that the value of (d* R, /dr® yatr =r_. is positive.
This is left as an exercise to the student.) Therefore, critical
thickness of insulation for spherical system = (r_ - ;).
Example 4,18. A refrigerant suction line of 25 mm OD is to be
insulated using a material of thermal conductivity k = 0.25 W/
(mK]}. The surface heat transfer coefficient i, is 10 W/ (mzK). Verify
if the insulation is effective or not. What should be the maximum
value of thermal conductivity of insulation to reduce the heat
transfer? (M.U. 2000)
Solution.
Data:

1= 00125 m k= 025 W/AmMK) b, = 10 W/(m?K)
Therefore,
Critical radius, r.:

(define critical radius for cylindrical system, from Eq. 4.64)
ie. r.=0025m (.critical radius)

This value of 7, is more than ry, i.e. starting from the refriger-
ant line surface at radius r,, as we go on increasing the thickness of
insulation, ) goes on increasing (instead of decreasing) till we
reach a radius of 7.

As the insulation radius exceeds the value of 7, ( starts decreasing. So, the maximum value of the thermal conductivity
required for r, to be equal to r, is given by: k. =r xh, (from r, = k/h,}

ie. kpax = F1-h,

ie. k

max = 0.125 m (maximum value of thermal conductivity of insulation to reduce heat transfer)
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Example 4.19. In Example 4.18, calculate the heat loss per metre length for every 2.5 mm increase in thickness of insula-
tion, up to a radius of 34.5 mun. Draw the graph of (Q/L) vs. radius of insulation. Given: temperature of refrigerant line
surface, T} = —20°C and ambient temperature, T, = 25°C.
Solution.
Bata:

r1:=00125m k=025 W/(mK) k= 10 W/(m?K) T,=20°C T,:=25C L:i=1m
Heat transfer per unit length, Q/L:
Overall temperature difference is AT = (T, - T,). This value will be negative since T, is less than T, and the heat flow is
from outside ambient to inside line surface. So, we write AT as (T, - T} to make positive. The total resistance, R, =
Reand + Regny where R .y is the conductive resistance of cylindrical layer of insulation and R oy 15 the convective
resistance between the insulation surface and the ambient.

We have from Eq. (4.62):

1 r 1
R.. =R, R = In| — L[4,
tot ins T Sconv SAkL n(ﬁ }"’ h(27rL) _ (4.62)

And, for L =1m, Q = AT/R,,

fe. QW) = L-h
r
In| —
(’IJ . 1
2-mkp L ko (2-mrL)

W/m (define heat transfer rate per metre length as a function of instlation radins, r)

Calculate () for various values of r:
Let r vary from 12.5 mm to 34.5 m at an increment of 2 mm.

So, define a range variable r to vary through this range. Then, in Mathcad, just give the command ’r =’ and a Table
of r values appears; also type the command ‘Q(r) =’ and a Table of () values at the defined values of r appears. Arrange
them side by side:

r = 0.0125, 0.0145, ..., 0.0345 ..define the range variable r; first value = 0.0125 m,
next value = 0.0145 m and last value = 0.345m

0.0125 35.343
0.0145 37.748
0.0165 39.428
0.0185 40.545
0.0205 41.235
0.0225 41.607
0.0245 41.743
0.0265 41.707
0.0285 41.546
0.0305 41.296
0.0325 40.983
0.0345 40.627

Above Table gives the values of 7 and corresponding values of (Q(r), side by side.

Observe that starting from the bare refrigerant line, ((J/L} goes on increasing as insulation is applied, reaches a
peak at r = 25 mm (i.e. the critical thickness) and then goes on decreasing. It is interesting to note that even with 34.5 mm
thickness of insulation, heat transfer per metre is larger than that with no insulation!

Graph of Q(r) vs. r:

This is drawn easily in Mathcad. Range variable, r and heat flow rate per unit length, Q(r) are already defnied. Now,
from the Graph palette, choose x - y graph, fill in the place holder on the x-axis with 7 and that on the y-axis with Q(r)
and click outside the graph region. Immediately the graph appears: See Fig. Fx. 4.19
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QIL = vs. rfor cylindrical system
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FIGURE Example 4.19

Note that Q(r) passes through a maximum at r = 0.025 m, i.e. at the value of critical radius. Observe the similarity
with Fig. 4.13(c).
Example 420. A 25 mm OD pipe line is to be thermally insulated with a material of k = (.25 W/(mK). Heat transfer
coefficient for surroundings, k, = 12 W/(m”K). Check whether the insulation would be effective or not. What should be
the maximum value of k for the insulating material to effectively reduce the heat transfer? Also, find the thickness of
insulation if an alternative material with k = 0.04 W/(mK) is employed and it is desired to reduce the heat transfer to
20.7% of that of bare pipe.

Solution.
Data:
7= 00125 m (outside radius of pipe line)
ks i= 0.25 W/{mK) (thermal conductivity of insulation material)
ky = 0.04 W/(mK) (thermal conductivity of alternative insulation material)
h, = 12 W/{m’K) (heat transfer coefficient on the outside surface of insulation)
Li=1m (length of pipe line)
Critical radius, r:
r, = i—""‘ (define critical radius for cylindrical system, from Eg. 4.64)
a
ie. r. = 0021 m (critical radius)

This value of r, is more than ry, i.e. starting from the pipe surface at radius 7, as we go on increasing the thickness
of insulation, Q goes on increasing (instead of decreasing) till we reach a radius of r,. Therefore, insulation is not
effective.

Max value of k to reduce heat transfer:

As the insulation radius exceeds the vaiue of r,, () starts decreasing. So, the maximum value of the thermal conductivity
required for 7, to be equal to r; is given by: ky,, = 7| x k. {from r. = k/h)}

ie. kpay = 111,

ie kpox =015 m  (maximum value of thermal conductivity of insulation to reduce heat transfer)
Thickness of alternative insulation when its k = 0.04 W/{(mK): -

It is also stated that with this alternative insulation heat transfer rate must be 20.7% of that of the bare pipe. Now, note
that for the bare pipe, there is heat transfer only by convection at its surface. Let the convective resistance to heat transfer
on the bare surface be Ry, For the insulated pipe, let the total resistance be R, Obviously, R, is made up of
conductive resistance of the cylindrical insulation material (R} and the convective resistance over its surface (R .y},
ie Rtot = Rcund + Roonv‘

Since the heat transfer with insulation is 20.7% of that for the bare pipe, for the same AT, we write:

Qs = 0.207 X Qure
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ie. AT/Ryy = 0.207 X AT/Ryype
ie Ryt = Ripare/0.207
Now, Rys e = 1/{(27r L}.1,}
Reona = Inlr, /r1)/(20k, L), where r, , is the radius of alternative insulation
R = 1/ 21y, 1)
Thermal resistances:
1

Riare = m C/W {define thermal resistance of bare pipe/m)
ie. Rpare = 1.061 C/W {thermal resistance of bare pipe)
Therefore,
R
Ry = ﬁ C/W (define total thermal resistance of insulated pipe)
ie. R = 5126 C/W (total thermal resistance of the insulated pipe)
Now, le = Rcond + Rcmw
In Ta
ie Ry, = Ropng # Rege = — 2L @)
hl tot = Teond T 2xkgLl b, (2r,L)
In| e
. 0.0125 1
ie. ot = +
2xax0.04x1 12x2xmxry x1
In| -
0.0125 1
ie. 5.126 = +
Zxax0.04x1 12X2xXa@xry, x1
ie. 39789 x In| 1 4 QOB 5106 (b
0.0125 T

Eq. b is a transcendental equation and has to be solved by trial and error. This is done easily in Mathcad, using
solve block. Start with a trial value of r,, then type 'Given’; and immediately below ‘Given’ type the constraint viz. Eq.
b. Then, the command ‘Find (r,;)" gives the value of r,,. as shown below:

ry = 0.05 (trial value of r,y)
Given
39789 Inf | 4 00828 540
0.0125 '
Find (r,;,) = 0.04186
ie. ¥ = 0.04186 m (radius of alternate insulation)

i.e. we get: 7, , the radius of the alternate insulation = 0.04186 m ie. 41.86 mm.
Thickness of alternate insulation:
Therefore, thickness of alternate insulation, t, is given by:
tr=ry—rhm {define thickness of alternate insulation)

ie. t = 0.02936 m (thickness of alternate insulation.)
Note: While solving Eq. a, it was first simplified to Eq. b and then Solve block was used. This was done just for clarity.
However, while using Mathcad, Eq. a can directly be solved in the Solve block as shown below: {Also see Example 4.15)

o = 0.1 (brial value of r )
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Given

In| T
n 1

Ry = +
o gk L kg 2mer

alt alt

Find{r,,) = 0.04186

i.e. tae= 0.04186 m {(radius of alternate insulation...same value as obtained above.)
Note: In this case, we took a different trial value of r,, to start with, just to show that it makes no difference in the final
value of ry,.
Exomple .21, A wire of 8 mun diameter at a temperature of 60°C is to be insulated by a material having k = 0.174 W/
(mC). Heat transfer coefficient on the outside, b, = 8 W/ (m*K). Ambient temperature, T, = 25°C. For maximum heat loss,
what is the minimum thickness of insulation and the heat loss per metre length? Find the increase in heat dissipation
due to insulation. Also, calculate the increase in current carrying capacity due to insulation. (M.U. 2000)
Solution. If r;, the radius of the wire is less than the critical radius r,, then, as the insulation is added on the bare wire,
heat loss goes on increasing, and becomes a maximum at the critical radius. So, the problem is to determine the critical
radius.
Data:

r, = 0004 m kins = 11174 W/{mC(C) h, =28 W/(m*K) T, = 60°C T, = 25°C Li=1m
Critical radius:

L

ro = k}'!“"" m (define critical radius for cylindrical system)
ie. r.= 0022 m {critical radius.)

Thickness of insulation for maximum heat transfer:
Maximum heat transfer occurs at the critical radius. Therefore, thickness of insulation at the critical radius is:

bpg = F - m (define t;,.)
ie. te = 001775 m.. = 17.75 mm (thickness of insulation)
Increase in heat transfer rate due to insulation:
Calculate heat loss for the bare wire and insulated wire separately and compare them. Remember: heat loss = AT/R
Heat loss/m without insulation:

T -T . .
Q= ——‘—1——"—— W/m (i.e. vverall AT divided by the convective resistance between
_— wire surface and ambrent)
h2-zmer-L
ie. Q= 7037 W/m (heat loss for bare wire)
Heat loss/m when insulated up to critical thickness:
T -T, " .
Q= W/m {overall AT divided by the sum of convective and
ln[r—cJ conductive resistances)
f 1
_+_
2 xkn L k2w L
ie. Q, = 14207 W/m (heat loss, with insulation up fo critical thickness)
Therefore, percentage increase in heat dissipation:
QZJ—Q'-JOO = 101.888% (percentage increase in heat transfer rate due to insulation.)

1
Increase in current carrying capacity due to insulation:
Now, heat dissipation with bare wire, Q; = I 12 x R, and,
heat dissipation with insulated wire, (3, = I,” x R,
where, I, and I, are currents for bare wire and wire with insulation, respectively, and R is the electrical resistance of the
wire. Therefore,

2= Quo)
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And,
Increase in current carrying capacity is given by:
Increase = (I - 1))/
={{I,/h) - 1)
And, percentage increase = {(I,/1;) ~ 1} x 100

i = {(Q /"% -1} x 100

1

-

ie. Per cent increase := (QiJ -1|-100 (define% increase in currenk carrying capacity)
1

ie. Per cent increase = 42.087 (% increase in currenl carrying capacity.)

4.14 Optimum (or Economic) Thickness of Insulation

As mentioned earlier, insulation on a hot or cold surface reduces the heat loss and thus effects a considerable
saving in energy. Therefore, choice of suitable insulation, its application to the surface and maintenance over the
lifetime of insulation are very important aspects in industry.
Consider the case of an insulation being applied ona  Costiyr 4
hot surface. As the thickness of insulation goes on
increasing, the amount of heat loss from the surface goes
on decreasing, ie. the cost of energy lost goes on
decreasing; but, at the same time, the first cost of material
and labour to apply the insulation goes on increasing. Total cost
Therefore, there are two opposing factors coming into
congideration while determining the combined cost, Cost of
namely, increased saving in cost of fuel {or energy} lost insulation
and increased expenditure for material and Jabour
towards the insulation.
‘Optimum’ or ‘Economic’ thickness of insulation is
that thickness for which the combined cost of the amount
of energy lost through the insulation and the total Cost of lost heat
(material + labour) cost of insulation is a minimum. »
Obviously, optimum thickness of insulation depends fopt bng
on many factors: f1>fed cost such as .materlal cost of FIGURE 4.16(a) Determination of opfimum
insulation, and varying costs such as: cost of energy, thickness of insulation
interest and depreciation, taxes, maintenance costs, etc.
Fig. 4.16 (a) shows cost of heat loss, cost of insulation and the total cost on an annualised basis, plotted
against thickness of insulation:
From the figure we note that the cost of insulation increases with thickness almost linearly, whereas the cost
of heat lost through insulation decreases exponentially. So, the total cost, which is the sum of these two costs,
decreases initially, reaches a minimum and then increases again. Thickness at which total cost is a minimum is
the optimum thickness. Mathematically, this is found out by differentiating the expression for total cost w.r.t.
thickness and equating to zero.
If we wish to compare three or four insulations for the same job, we can draw similar ‘Total cost curves’ for
those insulations and the thickness of the insulation having the lowest total cost is the optimum thickness. This is
shown in Fig. 4.16 (b), where insulation D has optimum thickness.
Generally, optimum thickness of insulation is calculated in one of the following ways:
(i) Combined cost of heat lost plus the insulation {including material) on an yearly basis should be
minimum, or

(ii) The insulation should pay for itself in two or three years, i.e. the cost of material and labour of insulation
should be equal to the cost of energy saved (by way of reducing the heat lost through the insulation) over
two or three years, or ' )
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Costiyr A (i) ‘Minimise the total present cost, considering an
interest rate, but neglecting other factors such as
depreciation, taxes and maintenance costs.

In method (iii) mentioned above, the procedure to

B find optimun thickness of insulation is as follows:

Let () be the heat loss through the insulation per
¢ D year. Let C, be the cost of heat loss per unit (Rs/k]). So,
the cost of heat loss/vear = Q.C,,. Then, if i is the com-
pound interest rate, compounded annually, the total
present value of heat loss, P, over the service life of n
years is given by:

mo QG
P, = - Rs
1 2}:1(1.”-)} @

And, let the present material + labour cost for
insulation be C,,, Rs/m> Then, if the volume of insula-
FIGURE 4.16(b) Comparison of insulations tion applied is V (m?), the present value of insulation, P,

b

-

¢

opt ’ins

is given by:
Py=VxCp Rs ..{b)
Then, from Eqgs. a and b,
Total present value or cost, Pr is given by:
7 QG
P = . - + VCy, Rs -(c}
! i=11+ iy "

In Eq. , first term on the RHS is dependent on radius (or thickness, L for a slab) of insulation, and by
differentiating Py w.r.t. radius (or L) and equating to zero, we obtain the value of 7 (or L) that gives minimum P;.
And then, optimum thickness is easily calculated.

Following examples illustrate the procedure of finding out the optimum thickness:

Exomple 4.22. A reactor, heated with saturated steam at 7.917 bar (T, , = 170°C) is 1.5 m in diameter and 2 m long,
operates 5840 hrs per year. Assume that surface of the reactor is at 170°C and the ambient is at 30°C. It is insulated with
an insulation of k = 0.038 W/(mC) which costs Rs. 16,000 per m* of insulation (including cost of material, labour,
cladding, etc.). Heat transfer coefficient on the outer surface is 30 W/(m?C). Cost of steam is Rs. 700 per ton. Latent heat
of steam at the given conditions is 2050 k}/kg. Efficiency of the steam heating may be taken as 80%. Determine the
optimum thickness of insulation and the money saved per year. Assume that surface temperature of the reactor and the
heat transfer coefficient remain the same for the reactor with and without insulation.

Solution.

Data:
D:=15m L=2m T,:=170°C T,:=30°C  h,:=30 W/(m2C) k,, := 0.038 W/(mC)
Cine = 16,000 Rs/m?® (cost of insulation per m*)  C, = _1660720% Rs/k] (cost of heat energy in steam)

ie. G, :=3.41463 x 107 (cost of heat energy in steam) 1, == 0.8 (efficiency of oven)

First, we find out the cost of heat lost for the bare reactor (= Cost1). Then, for the insulated reactor, find the costs of
energy lost through the insulation {i.e. CostP1) and the cost of insulation itself (i.e. CostP2) as a function of insulation
thickness. Adding them together gives total cost (i.e. CostTotal). Find out the thickness at which the CostTotal is
minimum by differentiating the expression for CostTotal and equating to zero, or graphically. This thickness is the
‘optimum thickness of insulation”. Now, find cost of heat lost through this insulation of eptimum thickness per year (=
Cost2).

Cost of heat lost from the surface of bare reactor (Costl):

M2
A=22 D + mD-L, m? (define total surface areq of the cylindrical reactor)
ie. A =1295% m* (total surface area of reactor)
Qpare = AT -T,), W (define heat loss from surface of bare reactor)
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i.e. Qbare = 5443 % 10 W (heat loss from the surface of bare furnace)

Olare -5840 x 3600
erefore, =l
The Q 1000

ie. Q=1144x 10°KJ (heat loss per year for bare reactor)

Efficiency of steam heating is 80%. Therefore, to dissipate  amount of energy, the oven must consume an energy

Qi =0Q/08

K] (heat loss per year (of 5840 hrs)}

Q

Therefore, Q= k] /year (define energy consumed by reactor/year)
oven
ie. Qi = 143 x 10° K}/ year (energy consumed by bare reactor/ year)
Now, find annual cost for bare reactor from the given data that 1 k] costs Rs. 3.41463 x 1074,
Costl := ,,-C, Rs/year (define annual cost of heat for bare reactor)
Cost1 := 4.884 x 10° Rs/year (annual cost of heat for bare reactor.)

Cost of heat loss through insulation, when reactor is insulated (CostP1):
When insulation is installed, the heat loss is determined from:
Qins = AT/Ryoy where AT = (T - T;} and Ree = (Reong + Reone)-
Further, since the reactor diameter is large (more than 1 m), we assume the surface to be flat, i.e. we will consider it
as a slab to calculate the thermal resistance.
Let ,,, be the thickness of insulation.
Then, we can write:

Ry

-T,
Qirs = Tt 1
+
keA  h A
And, now, heat loss per year for furnace with insulation will be,
Qy = Qi x 5840 x 360071000, k]/yt.
Efficiency of steam heating is 80%. Therefore, to dissipate Q, amount of energy, the reactor must consume an

energy Qy;, = /08, kJ/yr.
Now, find annual cost of heat loss for insulated reactor as a function of ¢, from the given data that 1 kJ costs Rs.
3.41463 x 107

W

5

CostPi(t,) = Qin X Gy, ... Rs./yr,
Therefore,

T,-T, i

CostP1(ty,) =

; 1 (5840 x 3600 x 107%). ——-C, (Rs/yr...define cost of lost heat)
ing ver
kA A ’
Cost of insulation {material + labour etc.)...(i.e. CostP2):
Cost of insulation = Volume of insulation X cost per unit volume

ie. CostP2(t,) = (A Xt} x Cin Rs
Therefore,
' CostP2(t,,) = Aty Cing K8 {define cost of insulation)
Total cost of (heat loss through insulation/yr + insulation}...(i.e. CostTotal}k:
CostTotal(t,,) = CostP1{t,) + CostP2(t,} Rs/yr {define cost of lost heat)

To find optimum thickness of insulation...(Le. t,;):

Differentiate the expression for CostTotal w.r.t. #;,, and equate to zero. Root of the resulting equation is the value of ¢
In Mathcad, this procedure is very easy: First, assume a trial value of t,,.. Next, define the derivative of CostTotal

as: CostTotal’. Then, use the ‘root function’ te find the reot of CostTotal” = 0:

te = 01 m (trial value of optimum insulation thickness)
CostTotal (t,,) = %CostTotal (tns) (define the first derivative of CostTotal)
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topt = root(CostTotal (t;,.), t,.) ~..use root function to get the root = f,,
Therefore,

tope = 0.05336 m...= 5.34 cm (thickness of optimum insulation where total cost is minimum.}
To find ¢, graphically:
Plot the three costs, namely, CostP1, CostP2 and CostTotal as a function of fine Optimum thickness is that thickness at
which the CostTotal is a minimum.: This is very easily done in Mathcad: First, define a range variable &, varying from
an initial value of say, 1 cm up to a final value of say, 20 cm with an increment of 0.5 cm. Then, select the x-y graph from
the graph palette and fill in tins in the place holder on the x-axis. On the y-axis place holder, fill in CostP1(t,,),
CostP2{ty), CostTotal (). Click outside the graph area and the three graphs appear immediately: See Fig. Ex. 4.22.

tps o= 0.01, 0.015... 0.2 {define range variable b, : first value = 0.01 m,

nse

next value = 0.015 m and last value = 0.2 m)

Optimum thickness of insulation

6x 10"
1
Cost P1 () 45 10° /,/’, — Cost of heat lost
Cost P2 (t,,) //':.—" - = === Cost of insulation
Cost Total {t, ) I Sale it Total cost
2x10° —F’
: E—
0 0.05 0.1 0.15 0.2

¢

Ins

FIGURE Example 4.22

Note: Observe from the graph that the minimum of CostTotal is at 0.053 m, i.e. the optimum thickness of insulation =
0.053 m, as obtained mathmatically earlier.

Money saved per year due to insulation:

For the bare reactor, cost of heat lost from the surface per year is Costl.

For the insulated reactor, insulated with optimum thickness of insulation, cost of heat lost per year is: CostP1{t -
Difference between these two costs is the money saved per year:

Costl = 4.884 % 10° Rs (already calculated)
CostPl(t,,) = 1.133 x 10° Rs/y (cost of heat lost through optimum thickness of insulation)
Saving per year is given by: :
Saving = Costl — CostP1 {tope)-
Therefore,
Saving := Costl - CostP1 (¢
ie Saving = 4.771 x 10° Rs/yr (money saved due to insulation.)
It may be noted that method of finding out ‘optimum thickness’ of insulation is rather involved. In practice, it is

more convenient to select the optimum thickness of insulation from the charts and tables prepared by TIMA (Thermal
Insulation Manufacturers’ Association} and their member companies.

apt) (define Saving...money saved per year due to insulation)
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4.15 Effect of Variable Thermal Conductivity

In the cases considered so far, we assumed thermal conductivity, k to be constant, i.e. k did not change with
temperature, However, this assumption may not be always true. When the k of a material varies rapidly with
temperature or when the temperature range of operation is large, it becomes necessary to take into account the
variation of k with temperature.

In general, analysis of heat transfer with variable k is complicated. However, for the special case of one-
dimensional steady state heat conduction with no internal heat generation, solutions for simple geometries such
as slabs, cylinders and spheres are obtained quite easily as explained below.

Generally, k varies with temperature linearly as follows:

kKT) =k,(1+ AT) . (4.67)
where, k, = thermal conductivity at 0 deg. C
B = temperature coefficient of thermal conductivity
T = temperature above 0 deg. C.

4.15.1 Plane Siab with Variable Thermal Conductivity

Consider a plane slab as shown in Fig. 4.17. Let the thickness be L. k is a linear function of temperature, given by
Eq. 4.67. Temperatures at the two faces are constant and uniform, ie. T=Tjatx=0and T=T,atx = L.

Assumptions:
(i) One-dimensional conduction, i.e. thickness L is small compared to the dimensions in the y and z-
directions
(ii) Steady state conduction, i.e. temperature at any point within the slab does not change with time; of
course, temperatures at different points within the slab will be different.
(iii) Nointernal heat generation
fiv) k varies linearly with temperature, i.e. k(T) = k(1 + BT). dax

e . s X k=KT)
Our problem is to first, find out the temperature field within >
the slab and then, the heat flux at any peint. T, x T,
For the above assumptions, the governing differential equa- T LA
tion reduces to: a
—d—[k(T)d—T] =0in0<x<L
dx dx
with k(Ty =k, (1 + pT)
B.C's: T=T,atx=0 - >
! L
T=T,atx=1L
, atx X
Solution to the above governing equation with the B.C.'s T T,
;hm\fn,‘ glives the temrﬁl:tfe lpfll'ofile and _tltlen, by applying Q—» .1 AAN e Q
ec e heat flux any point.
ourier’s law we can ge y p R = ik A
Alternative, simple method:
For heat transfer rate, (: FIGURE 4.17 Plane slab with k = k(T)
Remember that as far as there is steady state, one-dimensional and the thermal circuit

heat transfer with no internal heat generation, Q flowing through
each layer is a constant, as a consequence of First Jaw. Then, we can directly integrate the Fourier’s equation.
keeping the ( outside the integral sign, since it is a constant, though its value is yet unknown. Performing the
integration within the limits of B.C.’s given, gets the value of Q. Then, using the fact that ( is the same between
any two layers, we get the temperature profile. This method is outlined below:

Consider a differential element of thickness dx at a distance x from the origin as shown in Fig. 4.17. If dT is
the temperature differential across this element, then we can write from Fourier’s law:

Q= -kmaiLl
dx
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where, k(T) is given by Eq. 4.67
A = area normal to the direction of heat flow {same at all sections for a slab)
dT/dx is the temperature gradient
Substituting for k(T), separating the variables and integrating from x = 0 to x = L (with T = TitoT=T,,
we get:

L T,
%de - vJ‘k,, (1+ AT)dT a)
0 T
. QL L
L. == =4k, -T)+k A ——-=
Le A +Hk (M -To)+k, B > 5 (b)
ie g = [ko(Tl_T2)+kaﬁ[(Tl+T2)X(TI_T2)JJ
A 2
. QL T+ T
Le. 7‘1— = (T‘.E - T2)|:k0 + k0ﬁ1—2—2<:|
ie. %fi = (Ty - Ty xk,(1 + AT,) = (T, - Ty x k,,
where, k. =k, (1 + AT,) is the mean value of k at the mean value of temperature, T,,.
And, T, = (T+T,)/2

Therefore,
kn AT - T)
Q= 7 .

Eq. c gives the heat transfer rate for the plane slab, with variable thermal conductivity, k varying linearly
with temperature.

Eq. c is important since in most of the practical cases of insulation for furnaces or lagging of hot pipes,
thermal conductivity, indeed, varies linearly with temperature.

Writing Eq. ¢ in a form analogous to Ohm's law:

W ..{c)

g-AT _Gi-T) ETZ), W (4.68)
Rslab [ i
ko A

From Eq. 4.68, it is clear that expression for  for a slab with thermal conductivity varying linearly with
temperature, is of the same form as for a slab with constant k, except that k is replaced by k..
To get temperature distribution within the slab:
In Eq. a above, integrate between x = 0 and x = x (with correspondingly, T = T, and T = T(x)), i.e. result is easily
obtained by replacing L by x, T, by T{x} in Eq. b:

ie. Q= %[(TI -T)+ g(Tﬁ - T(:r)z)] -{d)
We write from from Eq. b:
Q-2 [m -t Bt - T%)] e

Equate Egs. d and e, since in steady state, Q is same through each layer of the slab. We get:

2
ﬂT;x)_ + T(x) + xT - Tz)L(l HATm) T1(1+~'6~L2£)

=0 ()
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Eq. f is a quadratic equation in T, whose roots are given by:

1 = 2% yb* - dac

2a
where, a=f/2,
k=1

L x(B-TH)A+ BTy n(u%]

L
Therefore,
_1iJ[i_‘lx‘gx{im*Tz)(1+mm)—T1(1+%L)}]
T{x} =
2><E
2
ie. T(I) = -_—1 + JLZ.F _.% X{T1[1 +&)_ x(Ti _TZ)(1+ ﬁTn;)}
B 5B 2 L
Le. T =3+ |5+ 2—3><1><(T ~To)(1+ BT,) (4.69)
ﬂ ﬁ 1 ﬁ i 1 2 m ...(4.

Eq. 4.69 gives the temperature distribution within the slab, with the thermal conductivity varying linearly
with temperature.

Temperature profile is shown graphically in Fig. 4.18: K=k, (1+B7)
Note that: for 8> 0, temperature profile is convex p=+ve
for § < 0, temperature profile is concave , and 8=0
s 1 . T L
for f = 0, temperature profile is linear (i.e. for constant &, /ﬁ =.-ve
temperature profile is linear, as already shown). Q
Shape of the temperature profile can easily be deduced as follows:
From k = k, (1 + BT), we can write:
dT L]
2ok
o ~kf
Therefore, for positive value of f: dk/dT is positive, ie. k in-
i E—

creases with increasing temperature or decreases with decreasing

L
temperature. Now, from Fourier's law: x

Q a7
N =kq- i FIGURE 4.18 Temperature profile in
a slab with variable k

As ¥ increases, T decreases and, therefore, k also decreases. Then, to keep the heat flux, (Q/A), constant,
—(dT/dx) must increase; i.e. (dT/dx) must decrease. So, the curve is convex. See the upper curve for 8> 0 in
Fig. 4.18.

For negative value of § by similar argument, the curve will be concave as shown in Fig. 4.18.

Example 4.23. A plane wall of fire clay brick of thickness 25 cm has temperatures of 1350°C and 50°C on its two sides. k
for fireclay brick varies as:
k(T) = 0.838 (1 + 0.0007 T), W/ (mC) where T is in deg.C. Calculate:
(i) the rate of heat flow
(ii} temperature at mid-plane
(iii) distance of the plane at 400°C from LHS5
{iv) sketch the temperature distribution in the wall.
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Solution. See Fig. Ex. 423,

-k =KT)
Data:
T, =1350°C T,:=1350°C  T,:=50°C L:=025m A:=1m
K(T) := 0.838-(1 + 0.0007-T) W/(m()
—*Q Note that k varies linearly with temperature since the above
relation is of the form:
k(T) = k,(1 + BT), where:
T =50°C k, = 0.838 (k value at zero deg.C)
B = 00007 (temperature coefficient conductivity)
> - Since k is varying linearly with temperature, (, the heat
i transfer rate is determined by the same formula as for plane slab
L=025m i .
| - X with constant k, except that instead of k we have to use k.. the
mean value of k(T). Remember that for a plane slab with constant k,
Q T T o we have:
VoV Q= AT/Rypand Ry, ,, =L/(kA)
Riap = LIk A} So, first, determine T, = (T, + T,)/2, then, k,, and then, R,
FIGURE Example 4.23 Plane wall—k varying (L+T)
linearly with T T, = —12—2°C (define mean temperature T,,)
ie. T,, = 700°C (mean temperature)
ky=ky(1+ 8-T,), W/(mC) (define ky,, mean thermal conductivity)
ie. k, = 1.249 W/{mC) (mean value of thermal conductivity)
Thermal resistance:
Ruyu= p LA C/w ...define thermal resistance of wall
Le. Rn=02C/W ...fthermal resistance of wall
Heat transfer rate, Q:
Therefore,
IL,-T,
Q:= < W -..define heat transfer rate through the wall)
wall
ie. Q= 649282 x 10° W (heat transfer rate through the wall.)

Temperature at mid-plane, i.e. at x = 0.125 m:
We can use Eq. 4.69 and substitute x = 0.125 in that equation,
However, let us work this out from fundamentals. Remember Q is same through each layer in steady state, since
there is no inte.nal heat generation. And, ( is already worked out to be 6§492.82 W,
From Fourier's law, at any x, we can write:

(Q/A) = —k(dT /dx)

0.125 Tix) Ti(x)
ie. % J‘dx =— Jk{T)dT = - Io.sssuw.ooowmr
Q 1360 1350
i.e. 6492.82 x 0.125 = 0.838 = (1350 — T'(x)) + 0.838 x 0.0007 x % % (13507 = T(x)?)

0.0002933 T2 + 0.8387 - 854.2367 = 0

Solving for root of this quadratic equation in T, we get the value of T at x = 0.125 m, ie. at mid-plane:

ie.

1
_ -0.838 +[(0.838)° + 4-0.0002933854.23675]
N 2-0.0002933

T

(Root of gquadratic equation)

ie. T = 797.034°C (temperature at mid-plane, i.e. at x = 0.125 m)
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Verify: verify this value of T from direct formula 4.69:

We have:
Ty = = [ LT 2—Exix(l' ~T)(1+ BT,) | eqn. 4.69)
7 50 e h - . eqn. $4.
Put x = 0.125
=0.125m (at mid-plane)
) 1
-1 |(1 2 x :
T = —+|| =+ | -== T, - T,)-(1+ AT, ;
) 3 [(ﬁ+ 1} 7L (T, -L)(1+ AT,) (define T(x))
Therefore,
T(0.125) = 797.033°C (temperature at mid-plane...verified)

Note the ease with which Eq. 4.69 is evaluated in Mathcad.
Distance of the plane at 400°C from LHS:
Again, in Mathcad, we can solve this easily by Eq. 4.69. But, first let us solve it by conventional method: Let the distance
of the plane at 400°C from origin (i.e. LHS) be x. Then,
Form Fourier'law, at any x, we can write:

(Q7AY = —k(dT /dx)

x 400 400
ie. %de =- Jk(T’)dT = - I0.838(1+0.0007T)dT
0 1350 1350

Here, (Q is known, already calculated to be 6492.82 W; and, A = 1 m’
Performing the integration:

(13507 — 400°)

6492.82x = 0.838.(1350 — 400) + 0.838-0.0007-
2 _ 4002
0.838-(1350 — 400) + 0.838.0.0007 - 150" ~4000)
ie. x = 2 m (define x)
6492.82
Le. x=0198 m, ..distance of the plane at 460°C from the LHS.

Verify: verify this value of x from direct formula 4.6%:
We use the solve block. Start with a trial value of x. Put the constraint of Iq. 4.69 with T{x) as 400°C, immediately
below ‘Given’. Then, the command ‘Find (x} =" gives the value of x:

x:=024m ’ (trial value of x)
Given
1
a1 Y 2% : ) . .
400 = "E —ﬁ +T; —E-E-(T] ~T,)-(1+ BT} (Write the constraint that T(x) = 400 in 4.69)
Find{x) = 0.198 m (value of x where T = 400°C...verified)

To draw temperature profile inside the wall:
Mathcad is ideally suited to do this. First, define a range variable x varying from ¢ to 0.25 m, at an interval of 0.01 m.
Then, select x - y graph from the graph palette, fill in x in the place holder on the x-axis and fill in T(x) in the place
holder on y-axis. Click anywhere outside the graph, and immediately the graph is drawn: See Fig. Ex. 4.23(b).
x =90, 0,01, ..., 025 ..define a range variable x, with starting value = 0,
next value = 0.01 and last value = 0.25 m
It may be verified from the above graph that temperatures at x = 0.125 m (ie. mid-plane) and at x = 0.198 m are
797°C and 400°C, respectively.
Example 424, In a furnace, the gas temperature is maintained at 1300°C and the surrounding temperature is 30°C.
The furnace walls are made of a layer of refractory material of thickness 30 cm and thermal conductivity k; = (0.28 +
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Temperature profile in wall with variable k

1500 —’
1000 \

T(x) \ T(x) in deg.C.
— X in metres
500 \\

0 0.05 0.1 0.15 0.2 0.25
X

FIGURE Exomple 4.23(b)

7 [ T3 -3
/ ky = 0.28 +0.23324 x 10° T, WmC)
; 4 Y T He=0.413+0.023278 x 10 T, WimG)
Q— —— —t— > Q= 750 Wim®
? ? 2
h, = 30 Wim'C) Refractory |brick| | hy, = 10 Wi(m'C)
T, =1300°C T, =30°C
< > T [—— :
L,=03m
1 L2
X
T, T,
Q—>eNNNSAANSANASANNA 0> g
R, R, R, R,

FIGURE Exomple 4.24 Furnace with insulations of variable k

0.23324 x 10 T), W/(mC) and a layer of bricks with a thermal conductivity k; = (0.113 + 0.023278 x 10~ T), W/(mC).
The heat transfer coefficient from gases to refractory wall is 30 W/(m’C) and that from brick to surroundings is 10 W/
(m’C). What should be the thickness of brick layer of the setting so that the loss of heat to surroundings should not
exceed 750 W/m??

Solution. See Fig. Example 4.24.
Data:
T, = 1300°C (temperature of hot gases in furnace) T}y := 30°Cltemperature of surroundings)
Ly = 0.3 m(thickness of refractory material)
Let L; be the thickness of brick layer.
ky: =028 + 02334 x 10T W(mC) (Thermal conductivity of refractory material)
ka := 0113 + 0023278 x 10T W(mC)  k, := 30 WmC) By = 10 WmM?C)  Q:=750 Wm? A :=1m?
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This is the case of steady state, one-dimensional conduction with no internal heat generation in the walls. There-
fore, thermal resistance concept is applicable. Also, use the fact that in steady state, heat flow rate through each layer is
the same. ‘

Fig. Example 4.24 shows the set up.

First, find temperatures T; and T, temperatures of exposed surfaces of refractory and the brick wall, respectively.

Convective thermal resistances R, and R,

R = h,l-A C/W (define convective thermal resistance between hot gases and refractory material)
ie. R, = 0033 C/W {convective thermal resistance between hot gases and refractory materiaf)
Ry = h[,]-A C/wW {define convective thermal resistance between surroundings and brick wall)
ie. R,=01C/W (convective thermal resistance between surroundings and brick wall.)

Temperatures T, and T
Apply the fact that heat flow rate, Q, through both convective layers is the same, i.e. Q = 750 W/m?, Therefore, from
Q = (T, ~ T/R, and Q = (T3 - T;)/ Ry, we write

T, =T, - Q.R, and

T,=T,+ QR

T, =T,-QR,C (define Ty, temperature of exposed surface of refractory layer)
ie. T, = 1275 x 10°°C (temperature of exposed surface of refractory layer.)

T;:=T,+ QR (define T, temperature of exposed surface of brick layer)
i-e T, = 105°C (temperature of exposed surface of brick layer.)

To find the interface temperature T, between the two layers:
Apply the fact that Q through the refractory layer is 750 W/ mZ. Here, we note that thermal conductivity varies linearly.
So, expression for the thermal resistance is the same as for a wall with constant thermal conductivity [i.e. R = L/{kA) |
except that k is replaced by k,,.

So, R, = L,/ (k,A); k, is obtained by substituting T = T,, = (T, + T3)/2 in the given expression for k(T).

Since T, is not yet known, let us write:

- h-T
Q = L]

[0.28 +0.23324 %1073 (Tl—;-Tl]]A

In the above equation, all values except T, are known. So, simplifying, we get a quadratic equation in T, and by
solving that equation we get T,. This is left as an exercise to the student.
Instead of following that laborious procedure, iet us use the solve block of Mathcad to solve for T, easily:
Start with a trial value for T, (say = T = 100) and write the above mentioned constraint immediately below ‘Given’.
Then, the command ‘Find(T) = ‘instantly gives the value of Ty:
T, = 100°C (trial value of T,)
Given

_ .-T
Q= i

[0.23 +0.23324x 1073 (I%&)]A

Find(T,) = 848.583
ie T, := 848.583°C {temperature of exposed surface of refractory layer.)
Thickness of the brick layer, Ly
Thickness of brick layer L, is obtained by aplying the equivalent Ohm’s law to the brick layer, i.e. Q = AT/R,, where
AT = (T, - Tj), and
R, = thermal resistance of brick layer = Ly/(k, A); now, mean value of thermal conductivity, k,, has to be used since
the thermal conductivity of brick layer varies linearly with temperature.

ONE-DIMENSIONAL STEADY STATE HEAT CONDUCTION WITHOUT HEAT GENERATION - §§




First, calculate k,,. For this, substitute the value of T,, in the given expression for k of brick layer. T,, = (T; + T3)/2:

T, +T.
Ty = % °C (define mean temperature of brick layer)
ie T,. = 476.791°C {(mean temperature of brick layer)
Therefore, mean value of thermal conductivity for brick layer is given by:
k, = 0,113 + 0.023278 x 167*-T,, W/(mC) (define mean temperature of brick layer)
ie. k,, = 1.124 W/(mC) (mean thermal conductivity of brick layer)
Now, applying equivalent Ohm’s law to the brick layer:
T, - T,
Q= ZTQ— {Ohm’s law for brick layer)
y4
k, A
ie. L, = (_TZ'T‘QM m (define L,, the thickness of brick layer)
ie L,=0123 m = 12.3 cm (thickness of brick layer.)

Exomple 4.25. Thermal conductivity of a plane wall varies with temperature according to the relation k(T) = k,(1 + FT2),
where k, and A are constants. i
{a} Develop an expression for the heat flow through the slab per unit area if the surfaces at x = 0 and x = L are
maintained at uniform temperatures T; and T,. respectively.
(b} Develop a relation for the thermal resistance of the wall if the heat transfer surface is A
{c) Calculate the heat transfer rate through A = 0.1 m? of the plate for T, = 200°C, T, = 0°C, L = 0.4 m, k, = 60 W/
(mC), and =025 x107° C2
Sohition. (a) Expression for heat transfer rate, (0
First of all, note that in this case, thermal conductivity varies with temperature in a non-linear fashion; therefore, the
relations derived earlier for mean thermal conductivity, k,, and thermal resistance, R, cannot be used.
However, still, it is a fact that there is one dimensional, steady state conduction with no heat generation in the wall,
Therefore, from First law, Q, the heat transfer rate is same through any section of the slab. So, we can directly integrate
Fourier’s equation, taking the  outside the integral:

Then, we write: Q =- k(T)-A? (Fourier's law)
X
Now, substitute for k(T):
; a7
Le. -Q =k (1 +)5T2).A.E
Separating the variables and integrating fromx =0tox =L, (and T=T ;to T=T,),
we get:
Qf f
—J. dx =~ kn-I(1+ B THdaT
Ay T,
. QL k,-
ie. - k,{Ty - T3} + 3’6 AT -TH
L k-
Le. QT =k, (T — Ty + “3'6 ATy =T (TE+ T T, + TH
ie. Q= W-[Hgmﬁn-n +T;)] (@)

Eq. a is the required expression for the heat transfer rate, Q.
(b} Expression for thermal resistance:
Let us write Eq. a in the form analogous to the Ohm'’s law:
T-% -1

Q= -tz = .

k,,.A-[1+§~(T,2 +T,-T, +T22)]
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Therefore, it is clear that the thermal resistance is given by
L

Ry = 7
ko'A-[1+§-(Tf +T,-T, +T§)]

()

Eq. b gives the expression for thermal resistance for the wall with k varying with temperahlre. as: k(T) = k(1 + BT%).
(<) Numerical problem:

Data: o
A=01m? T,=2000C T,:=00C L:=04m k:=60W/(mC) F:=025x19*C?
Therefore, heat transfer rate is given by Eq. a derived above: :

AT =T, -
Q:= W.[l+§-(’l}l+T,-Tz+Tf)] W (define heat transfer rate, Q)
Substituting the values and simplifying, we get:
Q = 4000 W (heat transfer rate through the plate.)

4.15.2 Hollow Cylinder with Variable Thermal Conductivity

Consider a long, hollow cylinder as shown in Fig. 4.19. Let length of cylinder be L, inside radiss r; and outside
radius r,. Inner and outer surfaces are at uniform temperatures of T, and T,,, respectively. Let k vary linearly with
temperature as given by Eq. 4.67.

T+dr

r
T;
r 4 N
T, T, o
Q > NN —8—>Q
Reyi = In(rg/rjf(2nk,L)
FIGURE 4.19(a) Cylindricol system with variable k and FIGURE 4.19(b) Elemental volume of
the equivalent thermal circuit thickness dr

Assumptions:
(i) Steady state conduction
{ii) One-dimensional conduction, in the r direction only
(iii) Thermal conductivity varies linearly with temperature
ie. KTy = k(1 + AT)
(iv) No internal heat generation.
Now, since this is a cylindrical system, we start with the general differential equation for one-dimensional
conduction, in cylindrical coordinates (see Eq. 3.17). For the stipulated conditions, the governing equation "
reduces to:
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%[r‘k('l’)z—f) =0inr;<rsr,
with KT) = k(1 + A1)
B.C.s: T=T,atr=r;

T=T,atr=r,

Solution to the above governing equation with the B.C.’s shown, gives the temperature profile and then, by
applying Fourier’s law we can get the heat flux any point.
Alternatively:
For heat transfer rate, J:
Since there is steady state, one-dimensional heat transfer with no internal heat generation, Q flowing through
each layer is a constant, as a consequence of First law. Then, we can directly integrate the Fourier’s equation
keeping  outside the integral sign, since it is a constant, though its value is yet unknown. Performing the
integration within the limits of B.C.’s given, gets the value of Q. Then, using the fact that Q is the same between
any two layers, we get the temperature profile. This method is outlined below:

Consider a differential element of thickness dr at a distance r from the origin as shown in Fig. 4.19. If dT is
the temperature differential across this element, then we can write from Fourier's law:

Q = k(1A 2L
dr
where,  k(T) is given by Eq. 4.67
A, = area at radius r, normal to the direction of heat flow = 2 zrL
dT/dr is the temperature gradient
Substituting for k(T), separating the variables and integrating from r=r,tor=r_ (with T=T;to T = T,), we

get:
o T,
Q_[ﬁ - -2zk,,LJ'(1+ﬂr)dT
T § T
ie. an(f‘l] = ZEkOL[(T,» ~T,)+ g x(T2 - Tf)]
7
ie. an(i} = 27L(T, - To)k,,l:l +fx (—T—;—Tf’)] = 2xL(T, - T)k, ()
ie. Q= 27kn L(T, - T) L (4.70)
In| 2
"
where,

ky = k,(1 + BT, ) = mean value of thermal conductivity and, -
Ty = (T; + T,}/2 = mean value of temperature.
Note that Eq. 4.70 for heat transfer ( for a cylindrical system with linearly varying k, is of the same as form
as for a cylindrical system with constant k, except that k is replaced by ,,.
Eq. 470 is important since in most of the practical cases of insulation for lagging of hot pipes, thermal
conductivity, indeed, varies linearly with temperature.
Writing Eq. 470 in a form analogous to Ohm's law, i.e. Q = AT/R, it is clear that thermal resistance of a
cylindrical system with linearly varying k is given by:

In| o
_\n
N 2xk, L
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_ To get temperature distribution within the cylindrical shell:
Integrate the Folirier’s equation. between r = r; and r = r. (with correspondingly, T = T; and T = T(r)), i.e. result is
easily obtained by replacing r, by r, T, by T(r) in Eq. a:

2L -TOVko[ , g (& +T(r»]
ln(r ‘_ 2

ie. Q= (b}

1

We write from Eq. a:

Q:

27 LT - Tk [, gx T +Ta)] 0

oe)

Equate Egs. b and ¢, since in steady state, { is the same through each layer of the cylinder:
22 L(T; - T(r ke {1 o it T(r»] _ 27L{@ - T)k, (T + T, )]
ln{L 2

%

14 Bx

To,
,l,

In
T *:"”] = VT T+ AX T,

ie. (T; - T(r))[l +fx
Inl 2

]Il -
ie. (5,1 + B[17 10 P] = 2@ - Ty 1+ BxT)

In| %
T

)
BT _ T, + i (T,-TM1+fxT,]=0 w(d)

T —
+ T(r) 2 i ]n[ri}
r:'

Eq. d is a quadratic in T(r). Its roots are given by:

-b+ Jbz ~dac

2a

BT
2

ie.

T(r} =

where, a = f/2,

(T~ Tl + BxT,l
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Therefore,

ln(r
s 7
-1+ 1—4x§x L T, 4\

o)
e

(G- T+ BxT,]

T(r) =
2x£
2
1 2 BT m(:}
ie TN =—+ [F-—x{-—/—-T+ (T, ~ T )1+ fxT,]
T
7
In| L
: -1 [1 ]2 2 \n
ie. T == + (| =+T| - Sx—LT -T)1+ A% T, (472)
B B B ln(r"J
7

Eq 4.72 gives the temperature distribution within the cylindrical shell, with the thermal conductivity
varying linearly with temperature.
Compare this with Eq. 4.6% for a slab with the k varying linearly with temperature.
Example 4.26. The inner and outer radii of a hollow cylinder are 5 and 10 cm, respectively. The inside surface is main-
tained at 300°C and the outside surface at 100°C. The thermal conductivity varies with temperature over this
temperature range as: k(T) = 05 x (1 + 1073 1), where T is in deg.C and k(T) is in W/(mC). Determine:
(i} heat flow rate per metre length of cylinder
(ii) termperature at mid-thickness of shell, and
(iii) sketch the temperature profile within the shell.

Solution. See Fig. Ex. 4.26.

Data: ] KT 1 =100°C
t=005m . f;=010m L:i=1m Q
T; = 300°C --'T, =100°C . k(T) = 05.(1+107.7)
Therefm-e, compal‘ing with k(T) = k,(1 + BT), we write:
k,:=05 W/(nQC-) . (k at zero deg.C)
f:=107 C‘ ! '{kmpvmture coefficient of thermal conductivity.) T,=300°C
Recognigé W il :ﬂ'lutﬂ'le thermal conductivity varies
with tempem!;ﬂ,;,_ ot
Therefort; 4§ i ’ ‘01.‘ ‘e heat transfer rate, Q, for a
cylindrical shelFi oftRe dame form as that for the case of r=0.05m
constant k, except | Wt & is replaced by k. the mean value of ! >
thermal condudwﬁy S&Eq 4.70. =01m
Heat transfer tafe;, € -
First, find T, andmen,k,,, Then use Eq. 4.70: T T,
T, = t +T . (define mean {average) temperature T, ) @ ©
m= , " R, = In(ry/r){(2nk,,L)
ie. T,= m(; (mean (average)} femperature T,.)
L FIGURE Example 4.26 Cylinder with variable k
b 1.ﬁ_ [ ond equivalent thermal cireuit
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Therefore,  k, = k,-(1+ 8T} (define mean value of thermal conductivity, k)

ie k, = 0.6 W/(mC) {mean value of thermal conductivify)
Therefore,
Thermal resistance:
In (r—”}
T ) . )
Ryt = m C/W (define thermal resistance of cylinder)
ie. R, =0.184 C/W (thermal resistance of cylinder)
And,
Tn - To
Q= R {define the heat transfer rate)
eyl
ie. Q = 1087.766 W (heat transfer rate per m length.)

Temperature at mid-thickness of shell, i.e. at r = 0.075 m:
This can be found out directly from Eq. (4.72) by substituting r = 0.075. But, let us first work this out from fundamentals
and then verify the result from Eq. 472, If T is the temperature at 7, then use the fact that Q is the same through each
layer of the shell. Remember, (J is already caleulated above.

From Fourier's equation, we have:

Q =-k(I)A, % (Fourier’s law)
ie Q =-k(T)-2-m-L-£
dr
ie. Q=-k 1+ ﬁ~T)-2-Jr-r»L-%Z
r

Separating the variables and integrating fromr=rytor=r{and T =T, to T = T) and keeping (I outside the integral,
since it is a constant); -

r

.
o | Lar - Z-Jr-ko‘L-J(l-v-ﬁ-T)dT
T,

.y
o)
T 0.001 x 300°
2

(T +
ie. 1087.766 ln(%SJ - — 27051 (T . .

Simplifying, we get:

2

o

C BT
'BZT + T -204.609 =0

This is a quadratic equation in T, whose positive root is:

-1+ "1+4~g-~204.6{]9
T= °C define T at r=0075m

2.

M e

ie. T = 187.105°C ..temperature at r = 0.075 m.

The above procedure is the conventional procedure where you get the quadratic equation in T and then, solve for

its roots. However, when you use Mathcad, there is no need for all that labour; just use the solve block of Mathcad. Start

with a trial value of T {say, 120°C} and in the solve block, immediately below ‘Giver', write the constraint, given by Eq.

a above. There is no need to perform the integration, since Mathcad does it internally. Then, the command Find(T) =’
immediately gives the value of T:

r:=0075 m (radius at mid-thickness)

T :=120°C (trial value of temperature at v = 0.075 m)
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Given

Q.I’zdr
T

Find(T) = 187.105°C (temperature at r = 0.075 m.}
Verify: Now, verify this result from Eq. 4.72:
Rewriting Eq. 4.72:

T
- Z-x‘k‘,-L-J‘(1+ﬂ-T)dT
T

;
T = = [1+T]2—£-m—[-r_i-]--(T-—T)-(1+ﬁ-T) (define T(r))
- ﬁ ﬂ i ﬂ n r_a i a m
"
ie, T{0.075) = 187.105°C (temperature at mid-thickness of shell.)

To sketch the temperature distribution in the shell:
First, define the range variable, r, varying from r = 0.05 m to r = 0.1 m, with an increment of 0.001 m. Then, choose the
x -y graph from the graph palette, fill in ‘»’ and ‘T(r)’ in the place holders on the x-axis and y-axis respectively. Click
anywhere outside the graph region and immediately the graph appears: .
r:= 0,05, 0.051, ..., 0.1 (define the range variable r, with first value = 0.05,
next value = 0.051, and lnst value = 0.1 m.)

r
2 )
() = 3+ (1+T.J -2 @ -ty AT
I VR h{r_,,J
]
T{r} for cylindrical shell with variable k
300
rin metres
250 : and T{r)in
deg.C
mn M,

— 200 \

150 \

N

100
0.04 005 006 007 0.08 0.09 0.1
r

FIGURE Example 4.26(b)

1t may be seen from the graph that at the inside and outside surfaces of the cylindrical shell, the temperatures are
100°C and 300°C, respectively, as given in data.
Exemple 4.27. A steam pipe, 20 cm OD carries steam at 260°C and is insulated with a material whose thermal conductiv-
"ty varies linearly with temperature. Insulation thickness is 6 cm. Quter surface of insulation is at 60°C and the heat flow
rate in steady state is measured to be 230 W/m. Reported value of k for this insulation is 0.081 W/(mC) at 100°C. Find
out the expression. for k(T). Also, find the temperature at mid-thickness of insulation and sketch the temperature profile
in the insulation.
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Solution,
Data.
r, =010 m r, =016 m L=1m T, = 260°C T, = 60°C Q:=20W/m

Since it is given that the thermal conductivity varies with temperature linearly, expression for the heat transfer rate,
Q. for a cylindrical shell is of the same form as that for the case of constant k, except that k is replaced by k,, the mean
value of thermal conductivity. See Eq. 4.70.

From Eq. 4.70, we have:

2k, L(T,-T,)

Q =

ln[r—"J

rl

Therefore, -

Q.ln[i)

1

| L T C .,
S S IAT =T /(nC) (define mean thermal conductivity, k)

ie. k,, = 0.08602 W/(mC) (mean thermal conductivity, k)
Now, for linear variation of k with T, we have the variation of the form: -
k(D) =k, 1+ B T)
Here, use k, = 0.081 W/{mC) and for T substitute (T - 100}
k, = 0.081 W/(mC} (thermal conductivity at 100°C)

Therefore,

0.08602 = 0.081- [1 +f ({260 ~ 100) + (69 - 100)]

2
ie. 1062 =1+ .60
. 1.062-1 _ , . -
ie. 8= 0 C (fermperature coefficient of thermal conductivity)
ie. A=1033x10°C! (temperature coefficient of thermal conductivity)

Therefore, k(T) is of the form:
k(T) ;= 0.081-[1 + 1.033 x 107-(T - 100)] W/(mC).Eq. (A)  (expression for linear variation of k(T).)
Temperature at mid-thickness, i.e. at r = 0.13 m: ’
Temperature at r = (.13 m is calculated by integrating Fourier's equation fromr=r, tor=r (and T=T, to T = T). While
doing so, (7 is constant and can, therefore, be taken out of the integral sign:
From Fourier’s equation we have:

Q=- k(T)-A,‘—;I- (Fourier’s law)
r
ie. Q :—k(T)-Z-Jr'r-L‘EZ
dr
. darT
ie. Q=-k;(1 +ﬂ~(T—100))~2-JrAr'Ld—
¥

Separating the variables and integrating from r=r, tor =r (and T = T; to T = T} and keeping Q outside the integral,
since it is a constant}:

n-l T
Q-j —dr = —Z-E-kovL~j(1+ﬂ-(T—100))dT (b
Jr T T,
ie. Q]I\[L] = - Z-E-ko-L-HT +£§—2-—100-ﬂ-TJ— [T, + ﬂg'z —100-/3-1",]]
T
ie. 230-]11[%} =~ 2-7-0.081 x 1-|:[T + ﬂsz f100~ﬁ’T] - 268.057]
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. pI
ie. - 118554 = || T+———100-4-T |- 268.057

-3 2
ie. % +0.897-T — 149503 = 0

This is a quadratic equation in T, whose positive root is given by:

-3
—-0.897 + J0.8972 44 208107 40 50m
T = define
5. 1.033 xl(ﬁ (define T)
2
e T = 153.162°C (temperature at r = 0.13 m.)

Note: Above-mentioned procedure is, however, laborious. Instead, let us solve for T using solve block of Mathcad. Start
with a trial value of T (say, 100°C) and in the solve block, immediately below ‘Given’, write the constraint, given by Eq.
(B). Then, the command ‘Find(T) = ‘immediately gives the value of T; But, we will define T(r) = Find(T), so that the same
solve block will repeatedly calculate T fer any r. This wili be useful to draw the temperature profile, i.e. T(r) vs. r.

r=013m (value of r at mid-thickness of insulation)
T := 100°C (trial value of temperature at radius r)
Given
1 T
Q-J:;dr =- 2-1|:~k0-L-L(1+ﬁ-(T - 100)dT
T(r) := Find(T) ..define T(r), temperature at any radius
Therefore,
T(0.13) = 153.197°C (Temperature at r = 0,13 m.)

Once again, note the great advantage of using the solve block. For any r, now the temperature T(r) can be calculated
by just putting the value of r in T(r}). This will be used to sketch the temperature profile in the insulation:
To sketch the temperzature profile in the insulation:
This is done easily in Mathcad. First, define a range variable r, varying from r = 0.1 m to r = (.16 m, with an increment
of 0.001 m. Then choose x-y graph from the graph palette and fill in the place hoiders on the x-axis and y-axis with '’
and “T(r)’, respectively. Click anywhere outside the graph region and immediately the graph appears: See. Fig. Ex. 4.27.

r:=0.1,0.101, .., 0.16 (define the range variable v, with first value = 0.1,
next valye = 0.101, and last value = 0.16 m.}

T{r) in cylindrical system with variable k

300

rin metres

N,
250 and T{r}in
deg.C
2 \\
150 \
100 \\

50
0.08 2.1 0.12 0.14 0.16
r

FIGURE Example 4.27
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Check: check the value of T(0.13) obtained above by finding out the value of (3 between r = 0.1 m and r = 0.13 m; Since
Q should be the same through each layer, we should get Q0 = 230 W: Between r = 0.1 m (T; = 260°C} and r = 0.13 m (T =
153.197°C), find k,, and then apply Eq. 4.70:

From Eq. A:
260 - 100) + (153-197 - 100

k, =k - [1 + ) (2 )] (define k)
i.e. k,. = 0.08992 W /(mnC) (mean value of k befween v = 0.1 m and r = 0.13 m)

Then, from Eq. 4.70:
r=013m : (radius at mid-thickness)
T :=153.197°C (temperature at r = 0.13 m)

2mky L-(T-T
Q= 28k LT =T) (define Q)
ln[iJ

1

Le. Q=229999 W/m (checks)

4.15.3 Hollow Sphere with Variable Thermal Conductivity

Consider a hollow sphere as shown in Fig. 4.20. Let the inside radius be r; and outside radius r,. Inner and outer
surfaces are at uniform temperatures of T; and T,, respectively. (T, > T, ). Let k of the material vary with linearly
with temperature as given by Eq. 4.67 i.e. k{T) = k,(1 + A7).

KN Jo o T+dT
TD
dr
/ !
T r
__/
n Z .
Iy > o
T1 To
Q Q
Rsph = {ry— 4k, r.r)
FIGURE 4.20(a) Spherical system with variable k FIGURE 4.20(b) Elemental volume of
and the equivalent thermal circuit thickness dr
Assumptions:

(i) Steady state conduction

(ii) Cne-dimensional conduction, in the r direction only
(iii) Thermal conductivity varies linearly with temperature, i.e. kK(T) = k,(1 + AT)
(iv) No internal heat generation.

Now, since this is a spherical system, we start with the general differential equation for one dimensional
conduction, in spherical coordinates (see Eq. 3.21). For the stipulated conditions, the governing equation reduces
to:

d

E{rz k(T)%) =0inr,sr<y,

ONE-DIMENSIONAL STEADY STATE HEAT CONDUCTION WITHOUT HEAT GENERATION




with kKT) =k + AT
B.C's: T=T;atr=r,
T=T,atr=¢ - o

Solution to the above governing equation with the B.C.’s shown, gives the temperature profile and then, by
‘applying Fourier’s law we can get the heat flux any point.
Alternatively:
For heat transfer rate, (:
Since there is steady state, one-dimensional heat transfer with no internal heat generation,  flowing through
each layer of the spherical shell is a constant, as a consequence of First law. Then, we can directly integrate the
Fourier’s equation keeping the () outside the integral sign, since it is a constant, though its value is yet unknown.
Performing the integration within the limits of B.C."s given, we get the value of Q. Then, using the fact that ( is
the same between any two layers, we get the temperature profile. This method is outlined below:

Consider a differential element of thickness dr at a distance r from the origin as shown in Fig. 4.20. if dT is
the temperature differential across this element, then we can write from Fourier’s law:

Q=-kmna L
dr
where, Kk(T) is given by Eq. 4.67
A, = area at radius r, normal to the direction of heat flow = 42
dT/dr is the temperature gradient
Substituting for k(T), separating the variables and integrating fromr=r,tor =7, (withT =T, to T =T,), we
get:

2

Q=-k1+ ﬁT)(4m2)£{Z
dr

% T,
QJ.d—; = 4xkoj(1+ﬁT)dT
.
T T;

ie. Q[_—r]] . 4;zka|:('1} ~T,)+ g x (T? - TOZ)]

ie Q(l - lj = 47(T; - Tu)ko[] + 8% (I’—;E] = 4zk, (T;— T, ..{a)
LA )

where,

k, =k,{(1 + AT,) = mean value of thermal conductivity and,
T, =(T; + T,)/2 = mean value of temperature

4Ekm('1:‘ _Tu) . 47[kmrirn(Ti _Tn)

__1__‘1 h =4
on

Note that Eq. 473 for heat transfer ) for a spherical system with linearly varying k, is of the same as form
as for a spherical system with constant k, except that k is replaced by k,,.

Eq. 473 is important since in most of the practical cases, thermal conductivity varies linearly with
temperature. Writing Eq. 4.73 in a form analogous to Chm’s law, i.e. Q = AT/R, it is clear that thermal resistance
of a spherical system with linearly varying k is given by:

ie. | Q= (4.73)

fy— ¥
R = ] I
T arkn,
To get temperature distribution within the spherical shell:

Integrate the Fourier’s equation between r = r; and r = r (with correspondingly, T = T; and T = T{r}}, i.e. result is
easily obtained by replacing r, by r, T, by T(r) in Eq. a:

ie. {4.74)
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2 2
Le. Q-= 4”—""[(1- ~T()+ fx M] -{b)
1.1 ' 2
)
We write from Eq. a:
2 2
ok, [m Ty g BT )} @
1.1
[r,- ro]

Equate Egs. b and ¢, since in steady state, { is the same through each layer of the sphere. Simplifying, we get
a quadratic equation in T{(r). Its solution gives the value of T(r), the temperature at radius r. This is left as an
exercise o the student. .

Final expression for T(r} is:

-1 1Y 2.1 (-1
T = —+ || =+T | -SxTx—L x(T -T,})x[1+8xT, (475
()ﬁ[ﬂ,]ﬁrm_r{)(lo)[ﬁl (475)
Eq. 4.75 gives the temperature distribution within the spherical shell, with the thermal conductivity varying
linearly with temperature. Compare this with Eq. 4.69 for a slab, and 4.72 for a cylinder, with the k varying
linearly with temperature.
Exomple 4.28. The inside and outside surfaces of a hollow sphere,a < r<b atr=a and r = b are maintained at uniform
temperatures Ty and T, respectively. The thermal conductivity varies with temperature as:

K(T) = k,(1 + aT + ST?)
{a) Develop an expression for the total heat flow rate  through the sphere.
(b) Develop a relation for the thermal resistance of the hollow sphere.

Solution. Note that now, the variation of k with temperature is not

linear; however, the method to solve the problem is the same as T+dT

adopted earlier, i.e. consider an elemental volume of thickness dr and T,

directly integrate the Fourier's equation from r = @ to r = b, remember- dr

ing that in steady state, one-dimensional conduction, with no internal KTy =k,(1+al+ BTZ)

heat generation, {2 is the same through each layer and is, therefore,
taken out of the integral sign.

See Fig. Example 4.28. T
So, for an elemental volume at a radius r and of thickness dr, we T; r
have:
Q =-k(TyA, ar (Fourier’s law) 2
dr -
b >
ie Q=-k(1+aT+ ,B-Tz)-4-fr-r2-i—T
-

FIGURE Exomple 4.28 Sphere with

Separating the variables and integrating from r = a to r = b (and non-linear variation of k(T)

corresponding, T = Ty to T = Ty), we get:

T
Q».rizdr =- 4-7t-ko-J.(1+ a T+ 8 THdT
a t T

ie. Q-[l—l) = 4.,-r~;rcn-[(T1 ~T)+ 21} —T22)+-'-B~-(T,3 -T;‘)]
a b 2 3
ie. g trkeat o T2)<[1+£-(T1 i Brten +Tf)} {a)
{(b—a) 2 3

Eq. a is the desired expression for heat transfer rate, Q.
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Thermal resistance:
Writing Eq. a in a form analogous to Ohm's law, i.e. Q = AT/R, we get:

1

R
sphere
4-I-ku-(1 - -11)-}-[1+a~T,,, +§-(Tf +T,T, +T22)]
a

-(b)

where, Tw=(T,+Ty/2 mean temperature.
Eq. b gives the required expression for thermal resistance of the sphere with temperature dependent k.
Example 4.29. An insulated spherical container to store liquid nitrogen, is overall 0.5 m OD and the insulation is 12 cm
thick, whose k varies with temperature as:
KT) =0.028 (1 +5x 103 T), where T is in deg.C.
If surface temperature of the sphere is 90 K, and the outside

K(T7)=0028(1+0.005T) surface is at 20°C, find out:
T,=20°C (i} heat transfer rate in steady state
Q (ii} temperature at mid-thickness of insulation, and

(iii) sketch the temperature profile.
Solufion. See Fig. Ex. 4.29

Recognise immediately that the thermal conductivity varies
with temperature linearly.

T;=-183°C Therefore, expression for the heat transfer rate, (), for a
> spherical shell is of the same form as that for the case of constant
=013m N k, except that k is replaced by k., the mean value of thermal con-
r,=025m ductivity. See Eq. 4.73.
T,- TO Data:
Q —»~0—/\/\/\/—0—+ Q r;=0.13m r,:=025m T; := - 183°C
Ry = (o — rf(dnkyror) T,=20°C  K(T):=0.028-(1 + 5 x 10T}
| " i variable k Therefore, comparing with k(T) = k(1 + AT), we write:
FIGURE Example 4.29 Sphere with variable k, = 0.028 W/(mC)  B:=5x107 C
Heat transfer rate, Q:
First, find T, and then, k,,. Then use Eq. 473:
T, := T—'%I“— ° (define mean (average} temperature T,,)
ie. Ty = - 81.5°C (mean (average) temperature T,,.)
Therefore, k,:==Fk-1+ 8T, (define mean value of thermal conductivity, k,,)
ie. k,, = 0.01659 W/(mC) {mean value of thermal conductivity)
Therefore,
Thermal resistance:
Ry = #;r'ﬁrﬂ C/W (define thermal resistance of sphere)
ie. Ry = 17711 C/W (thermal resistance of sphere)
And,
T: - To
Q= —= (define the heat transfer rate)
Rin
ie Q=- 11462 W (heat transfer rate)

- Note: Negative value of  indicates that heat transfer is from outside to inside {i.e. in the direction opposite to the
positive r direction).
Temperature at mid-thickness of shell i.e. at r = 0.19 m:
This can be found out directly from Eq. 4.75 by substituting v = 0.075.
But, let us first work this out from fundamentals and then verify the result from Eq. 4.75.
If T is the temperature at 7, then use the fact that J is the same through each layer of the shell. Remember, () is
already calculated above.
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From Fourier’ equation, we have:
7

Q=-KI)A-—= (Fourier's law)
ie Q=- k(T).4‘,,.r2..i“'I
dr
. 5 dT
L.e Q = - kﬂ-(l + ﬂT)4;;r d_
;

Separating the variables and integrating from r=rytor=r(@d T=T;toT=T) and keeping {J outside the integral,
since it is a constant):

F 1 T
Q~J- -;z-dr =—4-n-ko-‘[(1+ﬂ-T)dT -.(a)
I T
1 2 T
i.e. Q~[l——] = 4-x~k0-[[T, + AT }—[T+ﬂ—ﬂ
noor 2 2
1 _ 2 T2
ie. -11.462- LN 4 70028183+ 0.005)_183) | _ T+ pI
013 019 2 2
'3
ie. - 79.099 = 99278 - (T +%—T—}
ie. 0005 72 4 7420179 = 0
This is a quadratic equation in T, whose root is:
—1+"1f4-9'g—05x20.179
T:= 2@_05 C {define T at r = 0.19 m}
2
ie. T = - 21.315°C (temperature at r = 0.13 m.)

Note: When we use Mathcad, there is no need to adopt the above tedious procedure. Instead, use the solve block. Start
with a trial value of T (say, 10°C) and in the solve block, immediately below ‘Given', write the constraint, given by Eq.
a above. There is no need to perform the integration, since Mathcad does it internally. Then, the command ‘Find(T) =’
immediately gives the value of T:
r:=019m (radius at mid-thickness of shell)
T:=10°C (trial value of T)

Given
¥ 1 T
Q'j —dr = —4-/r-k0-‘[(1+[)‘-T)dT
[ T,

Find(T) = - 21.28
ie. T:=-2128C (Value of temperature af v = 0.19 m, i.c. mid- thickness of shell)
Verify: Now, verify this result from Eq. 4.75 too:
Rewriting Eq. 4.75:

2
Temp(r) = :ﬂl N J(% 4 T,-} - %’?[((:—'_1)5(7 ~T)(1+ ﬂ-m] (define Temp(r))
ie. Temp{0.19) = - 21.28°C (temperature at mid-thickness of sheil)

To sketch the temperature distribution in the shell:

First, define the range variable, r, varying fromr =013 mtor=025m, with an increment of 0.001 m. Then, choose the
x-y graph from the graph palette, fill in ‘r’ and Temp(r} in the place holders on the x-axis and y-axis respectively. Click
anywhere outside the graph region and immediately the graph appears:
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r:=013, 0131, ..., 0.25 ’ (define range variable 7, with first value = 0.13 m,
next value = 0.131 m, and last value = 0.25 m)

Temperature profile in sphere with variabie &

100
rin metres
50 and T(r) in
[—— deg.C
0 -
/

Temp (r) _50 / /
- 100 /
— 150

200

013 0.15 017 0.19 0.21 0.23 0.25
r

FIGURE Example 4.29(b)

Note how the temperature within the spherical insulation shell increases from -183°C at r = 0.13 m to 20°C at
r = 0.25 m; temperature at mid-thickness (r = 0.19 m} is - 21.28°C, as calculated earlier.

4.16 Two-dimensional Conduction—Shape Factor

50 far, we have considered heat transfer in different geometries assuming that heat transfer is one-dimensional.
This is a very good approximation and gives closely accurate results for simple geometries such as slabs,
cylinders and spheres. However, there are many practical cases where this is not a reality as in the case of
irregular shapes or when the temperatures along the boundaries are non-uniform. In such cases, heat transfer
will be in more than one-dimension. Practical examples are: heat treatment of engineering components of
irregular shapes, heat transfer in I.C. engine blocks, chimneys, air conditicning ducts, etc.

To solve multidimensional heat transfer problems, basically, there are four methods:
Andlyticol method. In this method start with the general differential equation for conduction in the required
ceordinate system and solve it in conjunction with the given initial and boundary conditions to get the
temperature field; then apply the Fourier’s equation and get the heat flux at any desired point. However, this
method is suitable only to simple geometries. Otherwise, the solutions are quite cumbersome and require
knowledge of infinite series, Bessel functions, Legendre polynomials, Laplace transform methods and complex
variable theory.
Graphical method. Graphical methods are used for two-dimensional problems with isothermal and -adiabatic
boundaries. This is an approximate method. Here, temperature and heat flow lines are drawn by free hand,
remembering that isothermal and heat flow lines are orthogonal, thus forming curvilinear squares. Once such a
“flux plot” is drawn, heat flow is easily calculated by applying Fouriers law to each ‘heat flow lane’. Again, this
method is suitable to simple geometries only and was popular in the early days when computing techniques
were primitive. This method is now almost obsolete.
Andlogleal method. This method makes use of the electrical analogy between the governing equations of electro-
statics and heat conduction to plot the potential field:
ie.

°E 9L

2 T
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and,

T o7
ax?  ay?
i.e. temperature and voltage are analogous.

Special conducting paper (or, conducting solution in a bath) is used to make a model of the geometry being

investigated and the isothermal {equipotential} lines are traced using a probe. Then, heat flow lines are drawn
normal to the isothermal lines. This method is more accurate than free hand plotting.
Mumerical method. Here, the body is divided into a number of discrete sub-volumes; centre of each sub-volume
is called a ‘node’ and the nodes are connected by fictitious ‘conducting rods’. By making a heat balance on each
node a set of algebraic equations are obtained and these are solved by standard methods to get the temperature
field.

Of the above-mentioned methods, numerical methods have taken over other methods because of availability
of high speed computers and the ability to analyse complex shapes and deal with complicated boundary
conditions. We shall explain this technique in a later chapter.

Shape factors for two-dimensional conduction:

Here, we will explain an approximate, but simple method to analyse a particular type of 2-D conduction
problems where steady state heat transfer occurs between two surfaces at fixed temperatures, T, and T,, with an
intervening solid medium in between. If ( is the rate of heat transfer between two temperature potentials T; and
T,, with the thermal conductivity of intervening material being k, with no heat generation in the medium, we
write:

=0

Q=kS(T =Ty ..{4.76)
whera, S is known as shape factor and has dimension of length. Note that Eq. 4.76 is applicable only when there
is conduction, i.e. in solids. For liquids and gases, where convection is generally the predominant phenomenon,
this equation is not applicable.

From Eq. 4.76, immediately it follows that thermal resistance of the medium is given by:

Ry, = 1/(kS) {477
Now, recall that thermal resistance of a plane wall, cylinder and sphere are given, respectively, by:
L
Rwall - kA
| e
R T
Y2kl
B
d, Ry = —2—
an T dmkenn,

From this, since we can write: § = 1/(R.k), we get:

A
Swan = f
2-xL
SCy] =—
Inl o
i
and, Sn = 4717,
h—h

One important application of the concept of shape factor is in calculation of heat transfer in a furnace. Here,
separate shape factors are used to calculate the heat flow through the walls, edges and corners. When all the
interior dimensions are greater than one-fifth of the wall thickness, we get:
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A
Swatt = T+ Sege = 054D, and § e, = 015-L

where, A = inside area of the wall, L. = wall thickness, and D = length of edge.
5 has been computed by researchers using electrical analogy or numerical methods, for several cases of practical

interest.

Figs. 421 to 4.30 give conduction shape factors for a few selected two-dimensional systems:

Isothermal cylinder of length L buried in a semi-
infinite medium (L >> D and z > 1.5 D)
5 =2xL/In(4z/D)

FIGURE 4.21

Two parallel isothermal cylinders placed in an
infinite medium (L >> D, D,, 2)
5=2zL/cos k" 14z% - D} - D})/(2D,.D,))

\WORVE
L
z
FIGURE 4.23

Isothermal sphere at T, buried in an infinite
medium at T,

§=2/D
T
Medium at 7,
D
FIGURE 4.25

Vertical Isothermal cylinder of length L buried in a
semi-infinite medium (L >> D)

§=2zL/In(4L/D)

/"

— D —
FIGURE 4.22

Disk buried parallel to the surface in a semi-
infinite medium (z >> D)
5=4D
5=2Dwhenz=10

" FIGURE 4.24

Isothermal sphere buried in a semi-infinite medium
- 2D
1-0.25D/z

—» D

FIGURE 4.26
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Isothermal sphere buried in a semi-infinite medium
at T,, whose surface is insulated

G- 2rD
1-0.025D/z

Insulated
'

z To,—medium

— D

FIGURE 4.27

Circular isothermal cylinder of length L at the centre
of a square solid bar of same length (L >> w)

S =2xL/In{1.08 w/D)

T

<,

1 L
< >

w

Diameter = D \

FIGURE 4.29

A square flow passage _
Fora/b > 1.4 S =2xL/{0.93 In(0.948 a/b)}
For a/b < 1.41; 5 =2xL/10.785 In(a/b))

A
o

Y
-

FIGURE 4.28

Eccentric circular hole in a cylindrical solid of length
L (L>Dy)

5 =2xl/cos hHD, - D, - 4z8/(2D,.D,)

FIGURE 4.30

Example 4.36. A spherical tank of diameter D = 2 m containing radio-active material is buried in the earth. The distance
between earth’s surface and the tank’s centre is 5 m. Heat release resulting from radioactive decay in the tank is 700 W.

Calculate the steady state temperature of tank’s surface if
the earth’s surface is at 10°C. The value of k of earth at this
location may be taken as: k = 1 W/{mC).

Solution, Refer to Fig. Example 4.30.

Data:
D:=2m z:=5m T, :=10°C
Q=700 W =1 W(mC)
For this situation, Shape factor is given in Fig. 4.26.
We have:
§ = Z—IDnﬁ (define shape factor)
1-0.25-—
z
ie. $=13963 m (Shape factor for given configuration)
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¥
A
_ Q=7C0W
z=5m =7
Y
_b‘
D=2m

FIGURE Exomple 4.30 Isothermal sphere buried
in a semi-infinite medium




Also,Q=k-5-(T| - T,) where T, is the temperature of tank’s surface.
Therefore,

T, = % £ TPC (define T))

ie. T, = 60.134°C (temperature of tank’s surface.)
Exumple 4.31. Inside dimensions of a small cubical furnace constructed of fireclay bricks (k = 1.04 W/(mC)) are: 0.6 m x
0.6 m x 0.6 m, walls being 0.1 m thick. The temperatures on the inside and outside surfaces are 550°C and 50°C, respec-
tively. Determine the heat lost from the furnace.

Solution. Recognise that this problem can be solved by use of ‘shape factors’. Also, recall that when the interior dimen-
sions of the furnace are greater than one-fifth of the wall thickness, we have, for Shape factors:

Sueals = %, Sedge = 054D, and Sypmer = 0.15-L

where, A = inside area of the wall, L = wall thickness, and D = length of edge.
See Fig. Example 4.31.
Note that for a cubical structure, there are 6 wall sections, 12
Q edges and 8 corners. Calculate the Shape factors and compute the
total Shape factor by adding all of them.

o T,=50°C  pata;
¢ Size of furnace: 0.6 m % 0.6 m, X 0.6 m i.e. dimension of each wall, D =
0.1 0.6 m
y D=06m L:=01m A=DDm?
| ie. A=036m> k:=104W/(mC) T,:=50C T,:=50°C
0.6m $ for Walls:
L 4 = 550°C 0.6m 5 for a single wall section is given by:
|<—>1 5= A m (define S for single wall section)
06m L
ie. S5=36m (Shape factor for single wall section.)
FIGURE Exomple 4.31 Cubical furnace Therefore, for 6 wall sections:

Soalls = 5-6m (S for 6 wall sections)
ie. Spails = 216 m (5 for 6 wall sections)
§ for Edges:

S for a single edge is given by:
5:=054-Dm (define S for single edge)
ie. §5=0324 m (Shape factor for single edge.)
Therefore, for 12 edges:

Sedges =512 m (5 for 12 edges)
ie. Sedges = 3.888 m (5 for 12 edges)
§ for Comers:

5 for a single corner is given by:
$:=015Lm (define S for single corner)
ie. $=0015m (Shape factor for single corner.)
Therefore, for 8§ corners:
Somers = 5-8m (S for B corners)
ie. Scomers = 312 m (5 for 8 corners)

Total Shape factor:
Therefore, total shape factor is obtained by summing up the shape factors for all the walls, edges and corners:

Siotal = Swaits + Sedges + Scomers M (total shape factor)
ie. Sioral = 25.608 m (total shape factor)
Heat transfer rate, Q:

Therefore, total heat loss from the furnace is given by:
Q= kS (T, - T, W (define Q)
ie. Q=1332x10*W = 13.32 kW (total heat loss rate from furnace.)
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4.17 Summary of Basic Conduction Relations

We have analysed steady state, one-dimensional heat transfer, with no internal heat generation, in three impor-
tant geometries, namely, plane slab, cylinder and sphere and derived relations for temperature distribution and
rate of heat transfer. We also studied the effect of variable thermal conductivity on these results. Since all these
relations are practically important, they are tabulated in Table 4.4 and Table 4.5, for easy reference.

TABLE 4.4 Relations for steady state, one-dimensional conduction with no infernal heat generation, and

constant k
2 1
Governing differential equation %x; =0 P %[r%t.] = :2 %[ EC;_:] =0
In L 1.1
R Tix})-T, _x n-7, _ 4 T(N-T _r
Temperature distribution 72—_T =7 T = . T = _lj
In| & r T r
i a 1}
AT, - kLT, - T, 4.k T -T,
Heat transfer rate, Q, (W) "‘_A(M LL(ML_U) ”—"'_{..L’l
L r Ta— f',
In[ 2
9
In[r—"}
Thermal resistance, R, (C/W) L AS _ -
s k-A 2.x-k-L 4.;[.k.f}.ro
itical radi K 2-k
Critical radius, r,, {m) - 5 -

TABLE 4.5(a) Relations for steady state, one-dimensional conduction with no internal heat generation and k
varying linearly with temperature as:
K(T) = k(1 + A7)
km = Ko{1 + fT5): To= (Ty + ToM2

A . . 4 (em ) 2o
Governing differential equation dx[ €8] dx]
Temperature distribution, T{x) L LI ’ - 3.1_(7-1 ~T)1+ BT,)
’ WA AL
Kk, AT, T,
Heat transfer rate, Q, (W) m__?_z),
; L
Thermal resistance, A, (C/W) A
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TABLE 4.5(b) Relations for steady state, one-dimensional conduction with no internal heat generation, ond k
varying linearly with femperature as:
K(T) = k{1 + AT)
K = ko1 4 BT,); Ty = (T + T2

Remton | Cylindral shell
d dT
i ifterential ti “rkmE] -0
Governsng differential equation dr(r () dr]
1o Y 2 m(}i]
Termperature distribution, T{1) — (_4. T.‘) - _._f.(Tf ~T {1+ BT,)
_ g \8 A
i
Heat transfer rate, Q, (W) LA RIULI}
In(-{‘l}
In[f"-}
fi

Thermal resistance, R, (C/W) Tk L
Fre

TABLE 4.5(c) Relations for steady state, one-dimensional conduction with no internal heat generation,
and k varying linearly with temperature as:
K(T) = k{1 + 4T)
k=K1 + AT T= (T, + T2

Governing differential equation i[rE-k(T)-gI) =0
dr ar
10 ¥ 2nle-n
Temperature distribution, {9 4 [_ + ‘r‘J - S X DT T )14 BT,
BB T T

Heal transfer rate, Q, (W)

L0
; o1
Thermal resistance, R, (C/W) Tk T
Jz' . . j. o

4.18 Summary

- In this chapter, we studied the application of general differential equation for conduction to the cases of steady
state, one-dimensional conduction, with no internal heat generation, in three simple, but important geometries,
namely, plane slab, cylinder and sphere. Expressions for temperature distribution and rate of heat transfer were

derived in these cases by two approaches:
(i) starting with the appropriate differential equation for the problem under consideration, and

(ii) by direct integration of Fourier's equation.
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Despite the mathematical simplicity of the relations derived, note that these relations give reasonably accu-
rate results in practical situations.

Concept of thermal resistance was used to solve steady state, one-dimensional heat transfer problems in
composite systems with no internal heat generation. Concept of contact resistance, and how to include its effect
on heat transfer rate was explained.

Critical radius of insulation was studied for cylindrical and spherical systems; how to find out the optimum
thickness of insulation was also indicated.

Next, the effect variable conductivity on rate of heat transfer and temperature distribution was explained
with reference to the above-mentioned three geometries.

Finally, different methods of solving multi-dimensional heat transfer problems were briefly mentioned and
Shape factors for two-dimensional heat transfer for many cases of practical importance were tabulated.

In the next chapter, we shall continue the study of steady state, one-dimensiconal heat conduction in simple
geometries, but with internal heat generation.

Questions .

1. Explain what is meant by ‘one-dimensional conduction’.

2. Explain log mean area’ for a hollow cylindrical system and ‘geometric mean area’ for a hollow spherical sys-
tem.

[M.U}

3. Explain the concept of ‘thermal resistance’. What are its applications?

4. Derive an expression to determine the heat flow through a composite cylindrical shell with two layers. Assume
no heat generation and that steady state is reached. M.U.]

5. Derive the following expression for loss of heat from a lagged pipe per square metre of metal surface per degree
temperature difference between the metal and lagging surface:

- k

U 3
log| 2
riog( %)

where, k is the thermal conductivity of lagging material; r and R are the radii of metal and lagging surface.

Neglect thermal resistance due to metal surface. [vru]
6. Derive an expression for steady state heat transfer through a composite spherical shell with two layers. [M.U ]
7. Prove that steady state heat transfer rate through the walls of sphericat container is given by:

T-T,
Q= 4.;;.R1.R2.(k‘ +k2]. —2
2 R,- R,
where, k = k; + (k; = k} (T = T}/ (To - Ty} and T, Ty Ky k5, Ry Rjare all constants. M.U]
8. Show that the heat transfer in a steady state unidirectional conduction through a spherical wall is given by:

Q = akdd, AT/6
where, d, and d are the inner and outer diameter of the sphere, respectively and &is the wall thickness.
MU
9. What do you mean by ‘overall heat transfer coefficient’? Derive an expression for the same for the case of a

composite cylinder of two layers, based on inside surface as well as outside surface (i.e. for U; and Li,).

10. Derive an expression for critical thickness of insulation in case of an electric cable. Explain the significance of
critical thickness. [V.T.U.]

11. Show that for a sphere, critical radius is given by: r, = 2 k;,./h.

12. The thermal conductivity of a certain material varies according to the following relation: k = k(1+oT),where ko
and  are constants. Prove that the heat transfer at steady state condition through a plane wall of thickness L is
given by

Q=k,A (T, -T)/L
where, k,, = k,[1 + (T, + T/2]
Also, derive the equation for temperature distribution. fM.U]
13. Steady one-dimensional heat conduction takes place through the slab of a material whose thermal conductivity
varies linearly with T as: k(T) = k(1 + aT) where & is a constant, The slab is of thickness s and the two faces of
the slab are maintained at temperatures T; and T,. There is no heat generation within the slab. Solving basic
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14.

15.

16.

17.
18.
19.

differential equation for one-dimensional, steady state conduction, find out the expression for temperature dis-
tribution within the slab. [M.U}
When thermal conductivity varies linearly with T as: k(T) = k, (1 + #T), show that heat transfer rate through a
cylindrical shell is given by:

2xk, L

All notations have usual meaning.
When thermal conductivity varies linearly with T as: k(T) = ky(1 + ST, show that heat transfer rate through a
spherical shell is given by:
AT
=—=

4'”'km'r| Ty

All notations have usual meaning,. -

A spherical shell of radii r, and r, is made of material with thermal conductivity K(T) = k,T°. Derive an expres-
sion for the heat transfer rate if the surfaces are held at temperatures T, and T,, respectively. [M.U]
What do you mean by ‘optimum thickness’ of insulation? How is it determined?

Enumerate different methods of solving two-dimensienal heat conduction problems.

What is ‘conduction shape factor'? How is it related to thermal resistance? Explain its applications.

Problems

Plane slabs and composite slabs:

1.

2.

A brick wall (k = 0.7 W/(mC)) is 0.3 m thick. Inner surface is maintained at 45°C and outside surface, at 25°C.
Calculate the heat transfer rate per m” of area. Also, find the temperature at the mid-plane.
A large window glass of thickness 4 mm {k = 0.78 W/{mC)) is exposed to warm air at 20°C at its inner surface,
with a convective heat transfer coefficient between inner surface and air being 15 W/(m*C). Outside air is at -
10°C and associated heat transfer coefficient is 45 W/{m?C). Find out the temperatures of inner and outer sur-
faces of the glass and the overall heat transfer coefficient.
A furnace wall is made up of 12 cm thick fireclay (k = 0.93 W/(mK)), 20 em thick red brick (k = 0.7 W/ {mK))
with covering of 6 mm thick mild steel plate (k = 39 W{mK)). 18 steel bolts, each of 20 mm diameter are used per
?’ for fixing the steel plate and composite wall together. Find the heat transfer per m® of furnace wall (length of
bolt 32.6 cm). [M.U]
A house wall may be approximated as two 1.2 cm layers of fibre insulating board, a 8 cm layer of loosely packed
asbestos and a 10 cm layer of common brick. Assuming convection heat transfer coefficients of 15 W/{m?K) on
both sides of the wall, calculate the overall heat transfer coefficient for this arrangement. (ke pogra = 0.033 W/
(MK), Kpbesios = 017 W/(mK), kyrioy = 0.65 W/ (mK). MU
A composite wall consists of 15 cm thick layer of matetial A and a 30 ¢m thick layer of material B. Thermal
conductivity of the two materials are different and unknown but constant. The outer surface temperature of
material A is 250°C and the outer surface temperature of material B is 50°C. An insulation of k = 0.05 W /{mK)
and thickness 2 cm is added to the outer face of B. It is observed that outer surface of A acquires a temperature
of 330°C and the junction between B and insulation is at 230°C. The outer surface of insulation is at 30°C.
Estimate the rate of heat flow per m%

(i) before the addition of insulation.

(it} after the addition of insulation. [M.U.]
A furnace wall 30 em thick has k = 1.4 W/(mK). The heat transfer coefficient of the outer surface is givenas h =
(8.1 + 0.09. AT) where AT is the temperature difference between outside wall surface and surrounding. If the
inner surface temperature is 1450°C, calculate the rate of heat loss per unit area. The furnace wall is insulated
such that the heat losses do not exceed 500 W/m® This is done by putting two layers of insulation on the outer
surface; the first one is of heat resisting brick of k = 0.6 W/(mK) and the second one is of silica brick of k = 0.15
W/(mK). If the thickness of silica brick is 30 cm, find the thickness of heat resisting brick. Assume the surround-
ing temperature as 40°C. MU
The inside temperature of furnace wall, 200 mm thick, is 1350°C. The mean thermal conductivity of wall
material is 1.35 W/(mC). The heat transfer coefficient of outside surface is a function of temperature difference
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10.

and is given by: h = 7.85 + 0.08 AT where AT is the temperature difference between outside wall surface and

surroundings. Determine the rate of heat transfer per unit area, if the surrounding temp. is 40°C, M.U]

{a) Calculate the rate of heat flow through 1 m” area of a clean heating surface of a steam boiler if the flue gas
temperature is 1500°C and the boiling water temperature is 250°C. The heat transfer coefficients from gas to
the wall and from the wall to the water are 120 W/ (mZC) and 4500 W/ (mZC)rn respectively. The thermal
conductivity of boiler wall material is 52 W/(mC) and its thickness is 12 mm.

(b} 1f the heating surface exposed to the gas side is covered with soot layer of 1 mm (k = 0.07 W/(mC)) and
water side surface is covered with scale of 1.5 mm thickness (k = 0.8 W/(mC)), calculate the rate of heat
flow and surface temperatures of the corresponding layers. M.U]

. In order to reduce heat loss from a furnace wall, the thickness of its brickwork is increased by 100%. The tem-

perature of the inner surface of the brickwork is 660°C. The temperature of the outer surface, before increasing
the wall thickness was 235°C. Calculate the percentage decrease in the heat loss due to increase in brickwork
thickness. Assume that the thermal cenductivity and heat transfer coefficient remain constant. Take atmospheric
temperature as 35°C. [M.U.]
A furnace wall is made of composite wall of total thickness 55 cm. The inside layer is made of refractory
material of k = 2.3 W/(mK) and the outside layer is made of an insulating material of k = 0.2 W/(mK). The mean
temperature of the gases inside furnace is 900°C and the interface temperature is 520°C. The heat transfer
coefficient between the gases and inner surface can be taken as 230 W/ (mzl() and between outer surface and
atmosphere as 46 W/(m“K). Assuming the temperature of surrounding air as'30°C, calculate:

(1} required thickness of each layer

(ii} rate of heat loss per unit area, and

(ili} the temperature of the surface exposed to gases and of the surface exposed to atmosphere. [M.U.]

Contact resistance:

11,

12.

A plane composite wall is made of two materials A and B with thermal conductivities k, = 0.1 W{mK} and ky =
0.04 W/{mK). Thicknesses are L, = 10 mm and Ly = 20 mm. Contact resistance between the layers is 5 x 10
mK/W. A fluid at 400°C flows over the free surface area of A with i, = 12 W/{m?K) and a fluid at 30°C flows
over the surface of B with h, = 25 W/(m’K). Determine the rate of heat transfer per m® of the wall surface,
temperature drop at the interface and overall heat transfer coefficient.

Two 5 cm diameter, 15 cm long aluminium bars {(k = 176 W/(mC}), with ground surfaces are held against each
other at a pressure of 20 bar and the thermal contact conductance at the interface, i, = 11,000 W/ (mZC). Bars are
insulated along their length. Top and bottom surfaces of this two-bar system are maintained at temperature of
250°C and 30°C, respectively. Calculate the rate of heat transfer along the bar in steady state and also the tem-
perature drop at the interface.

Variable area:

13.

14.

Ends A and B of a tapered rod, 250 mm long are 50 mm and 25 mm in diameter. The rod is insulated along its
lateral surface. If A and B are maintained at temperatures of 300°C and 27°C, respectively, and k of the material
is 40 W/(mC), find, in steady state:

(i) heat flow rate through the rod, and D=05 (x)o.s

(ii) temperature at mid-point.
Circular cross section of a cone like solid (k = 25 W/

insulated

(mK)), shown in Fig. Problem 4.14, varies as: D = 0.5 Ty =T700K T2 =500 K
x7-x; = 25 mm from origin and x, = 125 mm.

Temperatures T, and T, are maintained at 700 K and 500

K, respectively. Lateral surface is well-insulated. "7 7TTTTTTTTT - Q
Calculate:

(i) steady state heat transfer rate

(i} temperature at mid-section. %, =0.025m
Cylinders and composite cylinders: X =0125m"

15. A steam pipe, 0.12 m OD is insulated with 25 mm thick > X
layer of an insulation of k = 0.08 W/(mK). Temperature . .
of inner and outer surfaces of the insulation are 400°C FIGURE Problem 4.14  Tapered cone-like solid
and 40°C, respectively. Find the steady state rate of heat loss per metre length of pipe. Also, find the tempera-
ture of insulation at its mid-thickness.

16. A stainless steel tube (k= 19 W/(mK)), 2 cm ID and 4 cm OD is covered with a 4 cm layer of asbestos insulation

(k = 0.2 W/(mK)). If the steady state heat loss rate per metre length of tube is measured to be 750 W/m, and the
outside surface temperature is limited to 50°C, what is the temperature of the inside wall of the tube?
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17.

18.

19.

20.

A metal (k = 45 W/(mK)) steam pipe of 5 em ID and 6.5 cm OD is lagged with 2,75 cm radial thickness of high
temperature insulation having thermal conductivity of 1.1 W/(mK). J, and h, are 4650 W/{m?K} and 11.5 W/
{m’K), respectively. If the steam temperature is 200°C and the ambient temperatutre is 25°C, calculate:

{a) heat loss per metre length of pipe

{b) temperatures at the interfaces

(¢) overall coefficient of heat transfer referred to inside and outside surfaces (i.e. calculate U;and U). (M.U.]
A steel pipe having an external diameter of 8 cm carries steam at 40 bar and is lagged with a layer, 4 cm thick of
material of k = 0.04 W/(mK). Ambient temperature is 20°C and the surface of lagging has h = 10 W/(m?K).
What thickness of lagging of k = 0.06 W/(mK) must be added to reduce the steam condensation by 50% if the
surface coefficient remains unchanged? Neglect resistance of the pipe material and also of the steam film on the
inside of the steam pipe. M.U]
A steam pipe (k = 45 W/{mK)) having 70 mm. L), and 85 mm O.D. is lagged with two insulation layers; the
layer in contact with the pipe is 35 mm thick asbestos (k = 0.15 W/(mK)) and it is covered with 25 mm thick
magnesia insulation (k = 0.075 W/(mK}). The heat transfer coefficients for inside and outside surfaces are 220
W/(m’K) and 6.5 W/ (m’K) respectively. If the temperature of steam is 350°C and ambient temperature is 30°C,
calculate: (i) the steady state heat loss per metre length of pipe. (ii) overall heat transfer coefficients based on: (a)
inside surface of pipe, and (b) outside surface of pipe. {M.U]
A 200 mm ID pipe carries superheated steam at 210°C. The value of & of pipe material = 13 W/(mK). The outside
insulating layer has k = 0.2 W/{mK). Mean temperature at the interface is 195°C. k between steamn and pipe wall
= 60 W/(m’K) and between outer surface and ambient air is 35 W/ {m?K}. Assuming the total thickness of pipe
{(including pipe material) is 100 mm, ambient air at 30°C, calculate:

(i) required thickness of each layer

(ii) rate of heat transfer per unit outer area, and
(iii) inner and outer surface temperatures.

Spheres and composite spheres:

21,

22

23.

24,

25.

A hollow sphere of 5 em ID, 10 cm OD is made of a material of k = 45 W/(mC). What is the heat flux required
at the inner surface to maintain a steady state, inside surface temperature of 200°C when the outside surface
temperature is 15°C? What is the temperature at the mid-thickness of the shell?

A hollow sphere of 10 cm ID, 30 cm OD, of material k = 35 W/ (mK)}, contains a liquid chemical. Inner and outer
surface temperatures are 450°C and 150°C. Determine the heat flow rate through the sphere. Also, estimate the
temperature at a point quarter of the way between the inner and outer surfaces,

A spherical tank, 1 m in diameter is maintained at temperature of 120°C and exposed to a convection environ-
ment with k = 25 W/(m?K) and temperature of ambient is 15°C. What thickness of urethane foam (k = 20 mW/
(mK)) should be added to ensure that the outer temperature of the insulation does not exceed 40°C? What
percentage reduction in heat loss results from installing this insulation?

A hollow spherical form is used to determine thermal conductivity (k) of an insulator. It has an TD of 20 em, QD
of 50 em. A heater located at the centre of the sphere dissipates 30 W in steady state operation. Under steady
conditions, temperatures at radii of 15 em and 20 em were measured to be 80°C and 60°C, respectively. Deter-
mine the k. Also, find the outer surface temperature. If the surrounding is at 30°C, what is the heat transfer
coefficient over the surface? Plot the temperature profile along the radius.

A 600 mm OD sphere storing liquid is provided with two insulating layers, a high temperature insulation of k =
0.35 W/(mK) and a low temperature insulation of k = 0.07 W/(mK). The thickness of the former is 100 mm. The
temperature drop across the high temperature insulation is required to be 2.5 times that across the low tempera-
ture insulation. What should be the thickness of the latter? [V.T.U]

‘Critical radius’ and ‘optimum thickness’ of insulation:

26.

27.

28.

Determine the critical radius for a pipe covered with a layer of asbestos (k = 0.2 W/(mC)), exposed to atmos-
phere, if the outside heat transfer coefficient is 12 W/ (mZ2C).
An electrical conductor of diameter 1.5 mm is covered with an insulation of k = 0.15 W/{mC).

(a) If the external convective heat transfer coefficient is 40 W/ (m?C), what is the thickness of insulation that
will cause maximum heat transfer?

(b} If the surface of the conductor is maintained at 150°C and ambient temperature is 30°C, and convective
heat transfer coefficient remains the same, what is the rate of heat transfer (i) for bare wire, and (ii) with
optimum insulation?

A sphere of diameter 5 cm is heated electrically from inside. It is exposed to an ambient at 30°C with a heat
transfer coefficient of 25 W/(m’C). If the surface of the sphere is to be maintained at 150°C, calculate the rate of
heat loss from the sphere:
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29,

30.

31

32,

33.

34.

(i} if the sphere is bare
(i) if the sphere is covered with insulation of k = 1 W/(mC} to a thickness that will cause maximum heat
transfer, _

A hollow copper sphere has outer radius of 5 cm. The intérnal temperature gradient can be neglected. The
temperature of the sphere is to be maintained at 100°C by an embedded electric heater. The surrounding tem-
perature is 20°C and the outside heat transfer coefficient is 10 W/ {(m’K). If this sphere is covered by 5 cm thick
insulation {k = 0.5 W/(mK)), what will happen to heat loss? Calculate the percentage change in heat loss.
[M.U.]
A 1 mm diameter wire is maintained at a temperature of 350°C and exposed to convective environment at 30°C
with h# = 120 W/(m?K). Calculate the thermal conductivity which will just cause an insulation thickness of 0.2
mm to prod’uce a critical radius. How much of this insulation must be added to reduce the heat transfer to 75%
of that which would be experienced by the bare wire?
An electric cable of 10 mm diameter is to be laid in the atmosphere at 25°C. The estimated surface temperature
of the cable due to heat generation is 65°C. Find the maximum percentage increase in heat dissipated, when the
wire is insulated with rubber of k = 0.16 W/(mK). Take k,= 10 W/(mK). [M.U]
A wire of 8 mm diameter at a temperature of 60°C is to be insulated by a material having k = 0.174 W/(mK)}.
Given: h, = 8 W/mK, ambient temperature = 25°C. For maximum heat loss, what is the minimum thickness of
insulation and heat loss per metre length? Also, find the increase in heat dissipation due to insulation. M.U.]
A cylindrical vessel, heated with saturated steam at 6.18 bar (T, = 160°C) is 1.0 m in diameter and 1.6 m long,
operates 16 hrs. per day, 365 days a year. Assume that surface of the reactor is at 160°C and the ambient is at
25°C, 1t is insulated with an insulation of k = 0.038 W/{mC) which costs Rs. 17,000 per m? of insulation
(including cost of material, labour, cladding, etc.). Heat transfer coefficient on the outer surface is 25 W /{m’C).
Cost of steam is Rs. 750 per ton. Latent heat of steam at the given conditions is 2083 k]/kg. Determine the
optimum thickness of insulation and the money saved per year. Assume that surface temperature of the vessel
and the heat transfer coefficient remain the same for the reactor with and without insulation.
A 85 mun diameter pipe will carry steam at 220°C. It is proposed to lag it with an insulation of k = 0.15 W/{mC)
such that heat transfer rate is reduced to 25% of that from the bare pipe. The outside heat transfer coefficient
with air for lagged pipe is 10 W/(m°C) and, that from the bare Eipe at 220°C is 25 W/(m’C). The ambient
temperature is 30°C. If the estimated insulation cost is Rs. 16,000/m” (inciuding installation and other expenses)
and the steam cost is Rs. 800 per ton, calculate the pay-back period, assuming a rate of interest of Re. .18/
(yr)(Re). Latent heat of steam is 1859 k]/kg.

Variable thermal conductivity (slabs, cylinders and spheres):

35.

36.

37,

38.

40.

The wall of a furnace consists of two layers, one of fireclay of thickness 12.25 cm and the other of red brick of
thickness 48 cm. The thermal conductivity of fireclay is a function of temperature and its given by &, = (0.28 +
0.00023 T) W/{mK) where T is in degree Celsius. k, = thermal conductivity of red brick =0.7 W/{mXK). The inside
surface temperature is 1150°C and outside red brick wall temperature is 55°C. Calculate the amount of heat lost
per m® area of the furnace wall and interface temperature. M.U.]
Thermal conductivity of a plane slab varies with temperature as: &(T) = k,(1 + ATH, where k, and g are
constants. If the slab is 0.3 m thick and k; = 60 W/(m(), #=1025x 107* C % and the two faces of the slab are
maintained at 250°C and 30°C, respectively, find out the steady state heat transfer rate per m? of the area. Also,
calculate the temperature at mid-thickness, Plot the temperature profile along the thickness.
A hollow cylinder whose k varies with temperature as: k(T} = 0.5 (1 + 0.001 T), where T is in deg.C, has an ID of
7.5 cm and OD of 12.5 cm. If the inside and outside surfaces are at uniform temperatures of 250°C and 100°C,
respectively, find out the steady state heat transfer rate per metre length of pipe. Also, find out the temperature
at a radius of 10 cm.
A long, hollow cylinder is constructed from a material whose k varies with temperature as: KT) = (0.01 + 0.00
T), where k{T) is in W/(mK) and T is in deg.C. The inner and outer radii of the cylinder are 125 mm and 250
mm respectively. Under steady state conditions, the inner and outer surface temperatures are 698 K and 363 K,
respectively. Determine:

(i) the rate of heat flow per metre length

(i) the temperature of the air on the outside of the cylinder, if the surface heat transfer coefficient on the

exterior surface is 14.5 W/{m’K). V.TU]

. Thermal conductivity of a sphere, 6 cm ID, 10 cm OD, varies as: KT)y=k(QpB T, W/(mC), where T is in deg.C.

Calculate the steady state heat transfer rate if k, = 60 W/(mC), #=025x 1071 ,C7% and T, = 200°C and T, = 0°C.
Also, calculate the temperature at mid-thickness. Plot the temperature along the radius.

A cylindrical pressure vessel of 1 m ID and wall thickness 15 cm has the thermal conductivity of its material
varying as: k(T = 44 x (1 - 0.00042 T), W/(mC) where T is in deg.C. If the inside surface temperature is 500°C

ONE-DIMENSIONAL STEADY STATE HEAT CONDUCTION WITHOUT HEAT-GENERATION
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and the outer surface temperature is 300°C, what is the steady state heat transfer rate? Also, calculate the tem-
perature at mid-thickness. Plot the temperature variation along the radius. :

A spherical vessel, .3 m ID and 12 em thick, is made of a material with (T} = 51 x (1 - 0.0008 ), W/(mK}
where T is in deg.C. Inside surface is at - 160°C and outside surface at —50°C. Calculate the heat loss. What is
the temperature at mid-thickness? Plot the temperature along the radius.

Conduction shape factors:

42.

43,

45.

An isothermal sphere of radius r = & cm is buried in a large body of earth. The sphere is maintained at an
uniform temperature of 150°C; temperature of earth at large distance from the sphere is 15°C. Calculate the rate
of heat loss from the sphere, in steady state if k of earth is 1.2 W /{mC).

Twao parallel pipes are buried in earth with a spacing of 0.5 m between their centre lines. One of the pipes has a
radius 7| = 8 cm and its surface is at 80°C; the other pipe has a radius of r, = 5 cm and its surface is at 200°C.
Calculate the heat transfer rate between the pipes per metre length of pipes if k of earth is 1.2 W/{(mC).

A sphere of 1 m OD containing a radioactive material is buried such that its upper-most point is 1.5 m below the
earth’s surface. If the outside surface temperature of the sphere is 450°C and k of the soil is 1.2 W/(mC), deter-
mine the rate of heat loss from the sphere. Surface temperature of soil is 30°C.

Inside dimensions of a furnace are: 3 m x 2.5 m x 2 m and walls are 0.2 m thick, with a k = 1.3 W/ (mQ).
Temperature of inner and outer surfaces are 400°C and 50°C, respectively. Calculate the rate of heat loss from
the furnace.

FUNDAMENTALS OF HEAT AND MASS TRANSFER



